Citation: Fu Xiaopan, Wang Yangyang, Yang Jinyue, Wu Gaorong, Xia Chengcai, Ji Yafei. Fully Substituted Pyrazoles Assisted Palladium-Catalyzed Late-Stage Arylation of C(sp2)—H Bond[J]. Chinese Journal of Organic Chemistry, ;2020, 40(12): 4305-4314. doi: 10.6023/cjoc202005080 shu

Fully Substituted Pyrazoles Assisted Palladium-Catalyzed Late-Stage Arylation of C(sp2)—H Bond

  • Corresponding author: Xia Chengcai, xiachc@163.com Ji Yafei, jyf@ecust.edu.cn
  • Received Date: 28 May 2020
    Revised Date: 28 June 2020
    Available Online: 22 July 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21676088)the National Natural Science Foundation of China 21676088

Figures(6)

  • A successful protocol has been developed for palladium-catalyzed late-stage arylation of fully substituted pyrazoles. Through screening of optimazation of reaction parameters, the most efficient reaction conditions for mono-ortho-position arylation were obtained. This reaction features a broad substrate scope, good functional group tolerance as well as good to excellent yield. Moreover, the intermolecular competition experiments and gram scale reaction were also performed. The kinetic isotopic effect (KIE) result reveled C-H bond cleavage was involved in the rate-limiting step and a plausible mechanism was proposed based on the dual-core dimeric palladacycle.
  • 加载中
    1. [1]

      (a) Giri, R.; Shi, B. F.; Engle, K. M.; Maugel, N.; Yu, J. Q. Chem. Soc. Rev. 2009, 38, 3242.
      (b) Li, B. J.; Shi, Z. J. Chem. Soc. Rev. 2012, 41, 5588.
      (c) Louillat, M. L.; Patureau, F. W. Chem. Soc. Rev. 2014, 43, 901.
      (d) Chen, Z. K.; Wang, B. J.; Zhang, J. T.; Yu, W. L.; Liu, Z. X.; Zhang, Y. H. Org. Chem. Front. 2015, 2, 1107.
      (e) Gensch, T.; James, M. J.; Dalton, T.; Glorius, F. Angew. Chem., Int. Ed. 2018, 57, 2296.
      (f) Li, J. X.; Yang, S. R.; Wu, W. Q.; Jiang, H. F. Eur. J. Org. Chem. 2018, 1284.
      (g) Li, J. X.; Yang, S. R.; Wu, W. Q.; Jiang, H. F. Chem.-Asian J. 2019, 14, 4114.

    2. [2]

      (a) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174.
      (b) Seth, K.; Garg, S. K.; Kumar, R.; Purohit, P.; Meena, V. S.; Goyal, R.; Banerjee, U. C.; Chakraborti, A. K. ACS Med. Chem. Lett. 2014, 5, 512.

    3. [3]

      (a) Ashenhurst, J. A. Chem. Soc. Rev. 2010, 39, 540.
      (b) Bugaut, X.; Glorius, F. Angew. Chem., Int. Ed. 2011, 50, 7479.
      (c) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068.
      (d) Li, B.; Shi, Z. Chem. Soc. Rev. 2012, 41, 5588.

    4. [4]

      (a) Li, R.; Jiang, L.; Lu, W. Organometallics 2006, 25, 5973.
      (b) Kar, A.; Mangu, N.; Kaiser, H. M.; Tse, M. K. J. Organomet. Chem. 2009, 694, 524.
      (c) Zhou, L.; Lu, W. Organometallics 2012, 31, 2124.

    5. [5]

      (a) Ye, M. C.; Edmunds, A.; Morris, J.; Sale, D.; Zhang, Y.; Yu, J. Q. Chem. Sci. 2013, 4, 2374.
      (b) Han, J.; Liu, P.; Wang, C.; Wang, Q.; Zhang, J. Y.; Zhao, Y. W.; Shi, D. Q.; Huang, Z. B.; Zhao, Y. S. Org. Lett. 2014, 16, 5682.
      (c) Yang, Z.; Qiu, F. C.; Gao, J.; Li, Z. W.; Guan, B. T. Org. Lett. 2015, 17, 4316.
      (d) Xu, J. C.; Liu, Y.; Wang, Y.; Li, Y. J.; Xu, X. H.; Jin, Z. Org. Lett. 2017, 19, 1562.
      (e) Hu, Y. H.; Xu, Z.; Shao, L. Y.; Ji, Y. F. Synlett 2018, 29, 1875.
      (f) Yang, J. Y.; Fu, X. P.; Tang, S. B.; Deng, K. Z.; Zhang, L. L.; Yang, X. J.; Ji, Y. F. J. Org. Chem. 2019, 84, 10221.

    6. [6]

      (a) Deprez, N.; Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 11234.
      (b) Li, W.; Yin, Z.; Jiang, X.; Sun, P. J. Org. Chem. 2011, 76, 8543.
      (c) Guo, D. D.; Li, B.; Guo, S. H.; Pan, G. F.; Gao, Y. R.; Wang, Y. Q. ChemCatChem 2017, 9, 2001.

    7. [7]

      (a) Shabasho, D.; Daugulis, O. J. Am. Chem. Soc. 2010, 132, 3965.
      (b) Yokota, A.; Aihara, Y.; Chatani, N. J. Org. Chem. 2014, 79, 11922.

    8. [8]

      (a) Sun, C. L.; Liu, N.; Li, B. J.; Yu, D. G.; Wang, Y.; Shi, Z. J. Org. Lett. 2010, 12, 184.
      (b) Thirunavukkarasu, V. S.; Cheng, C. H. Chem.-Eur. J. 2011, 17, 14723.
      (c) Shao, L. Y.; Xing, L. H.; Guo, Y.; Yu, K. K.; Wang, W.; Liu, H. W.; Liao, D. H.; Ji, Y. F. Adv. Synth. Catal. 2018, 360, 2925.

    9. [9]

      Li, W.; Xu, Z.; Sun, P.; Jiang, X.; Fan, M. Org. Lett. 2011, 13, 1286.  doi: 10.1021/ol103075n

    10. [10]

      (a) Nishikata, T.; Abela, A. R.; Lipshutz, B. H. Angew. Chem., Int. Ed. 2010, 49, 781.
      (b) Jiang, Z.; Zhang, L.; Dong, C.; Su, X.; Li, H.; Tang, W.; Xu, L.; Fan, Q. RSC Adv. 2013, 3, 1025.
      (c) Li, D.; Xu, N.; Zhang, Y.; Wang, L. Chem. Commun. 2014, 50, 14862.

    11. [11]

      Zhang, Q.; Yin, X. S.; Zhao, S.; Fang, S. L.; Shi, B. F. Chem. Commun. 2014, 50, 8353.
       

    12. [12]

      (a) Cernak, T.; Dykstra, K. D.; Tyagarajan, S.; Vachal, P.; Krska, S. W. Chem. Soc. Rev. 2016, 45, 546.
      (b) Margrey, K. A.; Czaplyski, W. L.; Nicewicz, D. A.; Alexanian, E. J. J. Am. Chem. Soc. 2018, 140, 4213.
      (c) Brodney, M. A.; Sharma, R.; Lazzaro, J. T.; Walker, G. S.; Obach, R. S. Bioorg. Med. Chem. Lett. 2018, 28, 2068.
      (d) Graßl, S.; Chen, Y. H.; Hamze, C.; Tüllmann, C. P.; Knochel, P. Org. Lett. 2019, 21, 494.

    13. [13]

      (a) Paulis, T. D.; Hemstapat, K.; Chen, Y. L.; Zhang, Y. Q.; Saleh, S.; Alagille, D.; Baldwin, R. M.; Tamagnan, G. D.; Conn, P. J. J. Med. Chem. 2006, 49, 3332.
      (b) Lahm, G. P.; Cordova, D.; Barry, J. D. Bioorg. Med. Chem. 2009, 17, 4127.
      (c) Mowbray, C. E.; Burt, C.; Corbau, R.; Gayton, S.; Hawes, M.; Perros, M.; Tran, I.; Price, D. A.; Quinton, F. J.; Selby, M. D.; Stupple, P. A.; Webster, R.; Wood, A. Bioorg. Med. Chem. Lett. 2009, 19, 5857.
      (d) Alvarez, G.; Varela, J.; Cruces, E.; Fernández, M.; Gabay, M.; Leal, S. M.; Escobar, P.; Sanabria, L.; Serna, E.; Torres, S.; Thiel, S. J. F.; Yaluff, G.; Vera de Bilbao, N. I.; Cerecetto, H.; González, M. Antimicrob. Agents Chemother. 2015, 59, 1398.

    14. [14]

      (a) Shabashov, D.; Daugulis, O. Org. Lett. 2005, 7, 3657.
      (b) Cheng, K.; Zhang, Y.; Zhao, J.; Xie, C. Synlett 2008, 1325.
      (c) Umeda, N.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2009, 74, 7094.
      (d) Arockiam, P. B.; Fischmeister, C.; Bruneau, C.; Dixneuf, P. H. Green Chem. 2011, 13, 3075.
      (e) Thirunavukkarasu, V. S.; Raghuvanshi, K.; Ackermann, L. Org. Lett. 2013, 15, 3286.
      (f) Yu, X.; Yu, S.; Xiao, J.; Wan, B.; Li, X. J. Org. Chem. 2013, 78, 5444.
      (g) Liu, P. M.; Frost, C. G. Org. Lett. 2013, 15, 5862.
      (h) Fabre, I.; Wolff, N.; Duc, G.; Flegeau, E.; Bruneau, C.; Dixneuf, P.; Jutand, A. Chem.-Eur. J. 2013, 19, 7595.
      (i) Lu, M. Z.; Lu, P.; Xu, Y. H.; Loh, T.-P. Org. Lett. 2014, 16, 2614.
      (j) Han, S.; Sharma, S.; Park, J.; Kim, M.; Shin, Y.; Mishra, N. K.; Bae, J. J.; Kwak, J. H.; Jung, Y. H.; Kim, I. S. J. Org. Chem. 2014, 79, 275.
      (k) Reddy, G. M.; Rao, N. S.; Satyanarayana, P.; Maheswaran, H. RSC Adv. 2015, 5, 105347.
      (l) Yang, P.; Bao, Y. S. RSC Adv. 2017, 7, 53878.
      (m) Kwak, S. H.; Gulia, N.; Daugulis, O. J. Org. Chem. 2018, 83, 5844.
      (n) Abidi, O.; Boubaker, T.; Hierso, J.; Roger, J. Org. Biomol. Chem. 2019, 17, 5916.

    15. [15]

      (a) Fan, X. M.; Guo, Y.; Li, Y. D.; Yu, K. K.; Liu, H. W.; Liao, D. H.; Ji, Y. F. Asian J. Org. Chem. 2016, 5, 499.
      (b) Chen, M. M.; Shao, L. Y.; Lun, L. J.; Wu, Y. L.; Fu, X. P.; Ji, Y. F. Chin. Chem. Lett. 2019, 30, 702.

    16. [16]

      Ren, Z.; Dong, G. B. Organometallics 2016, 35, 1057.

  • 加载中
    1. [1]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    2. [2]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    3. [3]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    4. [4]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    5. [5]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    6. [6]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    7. [7]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    8. [8]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    9. [9]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    10. [10]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    11. [11]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    12. [12]

      Shengwen GuanZhaotong WeiNingxu HanYude WeiBin XuMing WangJunjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348

    13. [13]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    14. [14]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    15. [15]

      Shicheng DongJun Zhu . Could π-aromaticity cross an unsaturated system to a fully saturated one?. Chinese Chemical Letters, 2024, 35(6): 109214-. doi: 10.1016/j.cclet.2023.109214

    16. [16]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    17. [17]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    18. [18]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    19. [19]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    20. [20]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

Metrics
  • PDF Downloads(22)
  • Abstract views(2647)
  • HTML views(285)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return