|
||||||
Entry | Solvent | “N” source | “N” source/ equiv. | Time/h | t/℃ | Yield/% |
1 | — | NH4OAc | 3 | 26 | 120 | 79 |
2 | — | Ammonium formate | 3 | 26 | 120 | 18 |
3 | — | NH4Cl | 3 | 26 | 120 | 19 |
4 | — | Benzylamine | 3 | 26 | 120 | Trace |
5 | — | NH3•H2O | 3 | 26 | 120 | NR |
6 | DMSO | NH4OAc | 3 | 26 | 120 | NR |
7 | DMF | NH4OAc | 3 | 26 | 120 | NR |
8 | CH3CN | NH4OAc | 3 | 26 | 120 | 19 |
9 | PhMe | NH4OAc | 3 | 26 | 120 | 61 |
10 | — | NH4OAc | 1 | 26 | 120 | 20 |
11 | — | NH4OAc | 2 | 26 | 120 | 28 |
12 | — | NH4OAc | 4 | 26 | 120 | 71 |
13 | — | NH4OAc | 5 | 26 | 120 | 70 |
14 | — | NH4OAc | 3 | 26 | 40 | NR |
15 | — | NH4OAc | 3 | 26 | 80 | NR |
16 | — | NH4OAc | 3 | 26 | 100 | NR |
17 | — | NH4OAc | 3 | 26 | 110 | 50 |
18 | — | NH4OAc | 3 | 26 | 130 | 71 |
19 | — | NH4OAc | 3 | 4 | 120 | NR |
20 | — | NH4OAc | 3 | 6 | 120 | 20 |
21 | — | NH4OAc | 3 | 12 | 120 | 53 |
22 | — | NH4OAc | 3 | 20 | 120 | 60 |
23 | — | NH4OAc | 3 | 30 | 120 | 81 |
a Reaction conditions: 1a (1 mmol), 2a (1 mmol) and “N” source at the indicated amount in a sealed tube at the indicated reaction time and temperatures. |
Citation: Ding Yuxin, Ma Yongmin, Chen Jing. Novel Three-Component Annulation for the Synthesis of 2, 4, 6-Triaryl-pyrimidines under Solvent-Free and Catalyst-Free Conditions[J]. Chinese Journal of Organic Chemistry, 2020, 40(12): 4357-4363. doi: 10.6023/cjoc202005078
无溶剂无催化剂条件下三组分一锅合成2, 4, 6-三芳基嘧啶衍生物的新方法
-
关键词:
- 无催化剂
- / 无溶剂
- / 一锅法
- / 三组分反应
- / 2, 4, 6-三芳基嘧啶
English
Novel Three-Component Annulation for the Synthesis of 2, 4, 6-Triaryl-pyrimidines under Solvent-Free and Catalyst-Free Conditions
-
Key words:
- catalyst-free
- / solvent-free
- / one-pot
- / three-component reaction
- / 2, 4, 6-triarylpyrimidine
-
-
[1]
(a) Santos, M. F. C.; Harper, P. M.; Williams, D. E.; Mesquita, J. T.; Pinto, É. G.; da Costa-Silva, T. A.; Hajdu, E.; Ferreira, A. G.; Santos, R. A.; Murphy, P. J. J. Nat. Prod. 2015, 78, 1101.
(b) Pettit, G. R.; Tang, Y.; Zhang, Q.; Bourne, G. T.; Hooper, J. N. A. J. Nat. Prod. 2013, 76, 420. -
[2]
(a) Hou, J.; Wan, S.; Wang, G.; Zhang, T.; Li, Z.; Tian, Y.; Yu, Y.; Wu, X.; Zhang, J. Eur. J. Med. Chem. 2016, 118, 276.
(b) Agarwal, A.; Srivastava, K.; Puri, S. K.; Chauhan, P. M. S. Bioorg. Med. Chem. 2005, 13, 4645.
(c) Parker, W. B. Chem. Rev. 2009, 109, 2880.
(d) Shipe, W. D.; Sharik, S. S.; Barrow, J. C.; McGaughey, G. B.; Theberge, C. R.; Uslaner, J. M.; Yan, Y.; Renger, J. J.; Smith, S. M.; Coleman, P. J.; Cox, C. D. J. Med. Chem. 2015, 58, 7888.
(e) Johar, M.; Manning, T.; Kunimoto, D. Y.; Kumar, R. Bioorg. Med. Chem. 2005, 13, 6663.
(f) Agarwal, A.; Srivastava, K.; Puri, S. K.; Chauhan, P. M. S. Bioorg. Med. Chem. Lett. 2005, 15, 1881.
(g) Guo, Y.; Li, J.; Ma, J.; Yu, Z.; Wang, H.; Zhu, W.; Liao, X.; Zhao, Y. Chin. Chem. Lett. 2015, 26, 755.
(h) Chen, W.; Li, Y.; Zhou, Y.; Ma, Y.; Li, Z. Chin. Chem. Lett. 2019, 30, 2160.
(i) Shao, K.; Zhang, X.; Zhang, X.; Xue, D.; Ma, L.; Zhang, Q.; Liu, H. Chin. J. Chem. 2014, 32, 443. -
[3]
(a) Undheim, K.; Benneche, T. In Comprehensive Heterocyclic Chemistry II, Vol. 6, Eds.: Katritzky, A. R.; Rees, C. W.; Scriven, E. V. F., Pergamon Press, London, 1996, p. 93.
(b) Brown, D. J.; Evans, R. F.; Cowden, W. B. In The Pyrimidines, Vol. 52, Eds.: Taylor, E. C.; Weissberger, A., John Wiley, New York, 1994. -
[4]
(a) Gompper, R.; Mair, H.-J.; Polborn, K. Synthesis 1997, 696.
(b) Bassani, D. M.; Lehn, J. A.; Baum, G.; Fenske, D. Angew. Chem., Int. Ed. 1997, 36, 1845.
(c) Zhao, F.; Zhao, X.; Peng, B.; Gan, F.; Yao, M.; Tan, W.; Dong, J.; Zhang, Q. Chin. Chem. Lett. 2018, 29, 1692. -
[5]
(a) Wong, K.-T.; Hung, T. S.; Lin, Y.; Wu, C.-C.; Lee, G.-H.; Peng, S.-M.; Chou, C. H.; Su, Y. O. Org. Lett. 2002, 4, 513.
(b) Li, L.; Fang, Y.; Chen, H.; Zhang, Y. Chin. J. Chem. 2012, 30, 1144. -
[6]
(a) Harriman, A.; Ziessel, R. Coord. Chem. Rev. 1998, 171, 331.
(b) Harriman, A.; Ziessel, R. Chem. Commun. 1996, 32, 1707. -
[7]
(a) Dodson, R. M.; Seyler, J. K. J. Org. Chem. 1951, 16, 461.
(b) Guo, W. Chin. Chem. Lett. 2016, 27, 47.
(c) Chu, X. Q.; Cao, W.-B.; Xu, X.-P.; Ji, S.-J. J. Org. Chem. 2017, 82, 1145. -
[8]
Yuan, J.; Li, J.; Wang, B.; Sun, S.; Cheng, J. Tetrahedron Lett. 2017, 58, 4783. doi: 10.1016/j.tetlet.2017.11.020
-
[9]
Wang, P.; Zhang, X.; Liu, Y.; Chen, B. Asian J. Org. Chem. 2019, 8, 1122. doi: 10.1002/ajoc.201900248
-
[10]
(a) Deibl, N.; Ament, K.; Kempe, R. J. Am. Chem. Soc. 2015, 137, 12804.
(b) Bule, M. H.; Esfandyari, R.; Tafesse, T. B.; Amini, M.; Faramarzi, M. A.; Abdollahi, M. J. Chem. Pharm. Res. 2019, 11, 27
(c) Shi, T.; Qin, F.; Q. Zhang, Li, W. Org. Biomol. Chem. 2018, 16, 9487. -
[11]
Liu, D.; Guo, W.; Wu, W.; Jiang, H. J. Org. Chem. 2017, 82, 13609. doi: 10.1021/acs.joc.7b02113
-
[12]
(a) Martínez, A. G.; Fernandez, A. H.; Alvarez, R. M.; Losada, M. C. S.; Vilchez, D. M.; Subramanian, L. R.; Hanack, M. Synthesis 1990, 881.
(b) Fuji, M.; Obora, Y. Org. Lett. 2017, 19, 5569.
(c) Su, L.; Sun, K.; Pan, N.; Liu, L.; Yin, S. F. Org. Lett. 2018, 20, 3399. -
[13]
Schomaker, J. M.; Delia, T. J. J. Org. Chem. 2001, 66, 7125. doi: 10.1021/jo010573+
-
[14]
Adib, M.; Mahmoodi, N.; Mahdavi, M.; Bijanzadeh, H. R. Tetrahedron Lett. 2006, 47, 9365. doi: 10.1016/j.tetlet.2006.10.090
-
[15]
Seki, M.; Kubota, H.; Matsumoto, K.; Kinumaki, A.; Date, T.; Okamura, K. J. Org. Chem. 1993, 58, 6354. doi: 10.1021/jo00075a032
-
[16]
Heravi, M. M.; Sadjadi, S.; Oskooie, H. A.; Shoar, R. H.; Bamoharram, F. F. Tetrahedron Lett. 2009, 50, 662. doi: 10.1016/j.tetlet.2008.11.105
-
[17]
Ding, Y. X.; Ma, R. C.; Hider, R. C.; Ma, Y. M. Asian J. Org. Chem. 2020, 9, 242. doi: 10.1002/ajoc.201900700
-
[18]
Itami, K.; Yamazaki, D.; Yoshida, J. J. Am. Chem. Soc. 2004, 126, 15396. doi: 10.1021/ja044923w
-
[19]
Komatsu, R.; Nakao, K.; Sasabe, H.; Komatsu, R.; Hayasaka, Y.; Ohsawa, T.; Kido, J. J. Adv. Opt. Mater. 2017, 5, 1600675. doi: 10.1002/adom.201600675
-
[1]
-
表 1 反应条件的优化a
Table 1. Optimization of the reaction conditions
表 2 反应底物拓展a, b
Table 2. Scope of the substrates
Entry Product Ar1 Ar2 Ar3 Yieldb/% 1 3aa Ph Ph Ph 79, 75c 2 3ab Ph Ph 2-ClC6H4 60 3 3ac Ph Ph 2-BrC6H4 59 4 3ad Ph Ph 3-MeC6H4 81 5 3ae Ph Ph 3-MeOC6H4 51 6 3af Ph Ph 3-BrC6H4 80 7 3ag Ph Ph 4-MeC6H4 84 8 3ah Ph Ph 4-NO2C6H4 0 9 3ai Ph Ph 4-FC6H4 81 10 3aj Ph Ph 4-ClC6H4 86 11 3ak Ph Ph 4-BrC6H4 85 12 3ba 4-MeC6H4 Ph Ph 83 13 3ca 4-ClC6H4 Ph Ph 84 14 3da 4-BrC6H4 Ph Ph 81 15 3ea 3-ClC6H4 Ph Ph 79 16 3fa 4-MeC6H4 4-MeC6H4 Ph 85 17 3ga 4-FC6H4 4-FC6H4 Ph 81 18 3ha 4-ClC6H4 4-ClC6H4 Ph 85 19 3ia 4-BrC6H4 4-BrC6H4 Ph 86 20 3ja 4-ClC6H4 4-MeC6H4 Ph 82 21 3ka 3-FC6H4 3-FC6H4 Ph 82 22 3la 3-ClC6H4 3-ClC6H4 Ph 83 23 3ma 3-BrC6H4 3-BrC6H4 Ph 80 24 3na 2-MeC6H4 2-MeC6H4 Ph 0 25 3oa 2-FC6H4 2-FC6H4 Ph 0 26 3pa 2-ClC6H4 2-ClC6H4 Ph 0 27 3kl 3-FC6H4 3-FC6H4 3-FC6H4 80 a Reaction condiions: 1 (1 mmol), 2 (1 mmol) and NH4OAc (3 mmol), 120 ℃, 26 h; b Isolated yield; c10 mmol scale.
计量
- PDF下载量: 55
- 文章访问数: 2770
- HTML全文浏览量: 333