Citation: Wu Jieqing, Gu Jiefan, Chen Qinrui, Ma Hongfei, Li Yufeng. Ni(Ⅱ)-Catalyzed Oxidative Coupling of Arenes[J]. Chinese Journal of Organic Chemistry, ;2020, 40(9): 2772-2777. doi: 10.6023/cjoc202005073 shu

Ni(Ⅱ)-Catalyzed Oxidative Coupling of Arenes

  • Corresponding author: Li Yufeng, yufengli@njtech.edu.cn
  • Received Date: 26 May 2020
    Revised Date: 19 June 2020
    Available Online: 15 July 2020

Figures(2)

  • A protocol for the synthesis of bibenzyls via nickel acetylacetonate-catalyzed coupling of arenes was devloped using di-tert-butylperoxide as the oxidant with the asistance of 1, 4-diazabicyclo[2.2.2]octane (DABCO). The process tolerated to different substrates, among of which, isopropylbenzene provided the most satisfactory yield of bibenzyls in 73% yield. The cross-coupling of arenes with cycloalkanes was also realized under the optimal reaction conditions but accompanied with the self-coupling of substrates. The method could effectively restrain the formation of alcohol, aldehyde, acid.
  • 加载中
    1. [1]

      (a) Speicher, A.; Groh, M.; Hennrich, M.; Huynh, A. Eur. J. Org. Chem. 2010, 35, 6760.
      (b) Asakawa, Y.; Lin, X. H.; Kondo, K.; Fukuyama, Y. Phytochemistry 1991, 30, 4019.
      (c) Park, B. H.; Lee, Y. R.; Kim, S. H. Bull. Korean Chem. Soc. 2011, 32, 566.
      (d) Asakawa, Y.; Toyota, M.; Tori, M.; Hashimoto, T. Spectroscopy 2000, 14, 149.

    2. [2]

      (a) Song, J. X.; Shaw, P. C.; Wong, N. S.; Sze, C. W.; Yao, X. S.; Tang, C. W.; Tong, Y.; Zhang, Y. B. Neurosci. Lett. 2012, 521, 76.
      (b) Lee, K. Y.; Sung, S. H.; Kim, Y. C. J. Nat. Prod. 2006, 69, 679.
      (c) Kim, K. H.; Kim, M. A.; Moon, E.; Kim, S. Y.; Choi, S. Z.; Son, M. W.; Lee, K. R. Bioorg. Med. Chem. Lett. 2011, 21, 2075.

    3. [3]

      (a) Chen, Y.; Xu, J. J.; Yu, H.; Qing, C.; Zhang, Y. L.; Wang, L. Q.; Liu, Y.; Wang, J. H. Food Chem. 2008, 107, 169.
      (b) Cushman, M.; Nagarathnam, D.; Gopal, D.; Chakraborti, A. K.; Lin, C. M.; Hamel, E. J. Med. Chem. 1991, 34, 2579.
      (c) Guo, D. X.; Xiang, F.; Wang, X. N.; Yuan, H. Q.; Xi, G. M.; Wang, Y. Y.; Yu, W. T.; Lou, H. X. Phytochemistry 2010, 71, 1573.

    4. [4]

      (a) Kostecki, K.; Engelmeier, D.; Pacher, T.; Hofer, O.; Vajrodaya, S.; Greger, H. Phytochemistry 2004, 65, 99.
      (b) Lin, L. G.; Yang, X. Z.; Tang, C. P.; Ke, C. Q.; Zhang, J. B.; Ye, Y. Phytochemistry 2008, 69, 457.
      (c) Boonphong, S.; Puangsombat, P.; Baramee, A.; Mahidol, C.; Ruchirawat, S.; Kittakoop, P. J. Nat. Prod. 2007, 70, 795.

    5. [5]

      (a) Hwang, J. S.; Lee, S. A.; Hong, S. S.; Han, X. H.; Lee, C.; Kang, S. J.; Lee, D.; Kim, Y.; Hong, J. T.; Lee, M. K.; Hwang, B. Y. Bioorg. Med. Chem. Lett. 2010, 20, 3785.
      (b) Adams, M.; Pacher, T.; Greger, H.; Bauer, R. J. Nat. Prod. 2005, 68, 83.

    6. [6]

      Song, J. X.; Shaw, P. C.; Sze, C. W.; Tong, Y.; Yao, X. S.; Ng, T. B.; Zhang, Y. B. Neurochem. Int. 2010, 57, 676.  doi: 10.1016/j.neuint.2010.08.007

    7. [7]

      (a) Zhang, Y. L.; Guo, D. X.; Wang, L.; Lou, H. X. Chin. J. Nat. Med. 2010, 8, 177.
      (b) Xu, F. Q.; Xu, F. C.; Hou, B.; Fan, W. W.; Zi, C. T.; Li, Y.; Dong, F. W.; Liu, Y. Q.; Sheng, J.; Zuo, Z. L.; Hu, J. M. Bioorg. Med. Chem. Lett. 2014, 24, 5268.

    8. [8]

      (a) Sato, K.; Inoue, Y.; Mori, T.; Sakaue, A.; Tarui, A.; Omote, M.; Kumadaki, I.; Ando, A. Org. Lett. 2014, 16, 3756.
      (b) Zhu, Y. G.; Xiong, T.; Han, W. Y.; Shi, Y. A. Org. Lett. 2014, 16, 6144.
      (c) Barrero, A. F.; Herrador, M. M.; Quilez, J. F.; Arteaga, P.; Akssira, M.; Hanbali, F.; Arteaga, J. F.; Dieguez, H. R.; Sanchez, E. M. J. Org. Chem. 2007, 72, 2251.
      (d) Levin, V. V.; Agababyan, D. P.; Struchkova, M. I.; Dilman, A. D. Synthesis 2018, 50, 2930.
      (e) Chen, T.; Yang, L. M.; Li, L.; Huang, K. W. Tetrahedron 2012, 68, 6152.
      (f) Ramesh, N.; Prakash, C.; Sureshbabu, R.; Dhayalan, V.; Mohanakrishnan, A. K. Tetrahedron 2008, 64, 2071.
      (g) Eisch, J. J.; Dutta, S. Organometallics 2004, 23, 4181.

    9. [9]

      (a) Zartman, W. H.; Adkins, H. J. Am. Chem. Soc. 1932, 54, 1668.
      (b) Horning, E. C.; Reisner, D. B. J. Am. Chem. Soc. 1949, 71. 1036.
      (c) Hattori, K.; Sajiki, H.; Hirota, K. Tetrahedron 2001, 57, 4817.
      (d) Ranaweera, A. A. U.; Zhao, Y.; Muthukrishnan, S.; Keller, C.; Gudmundsdottir, A. D. Aust. J. Chem. 2010, 63, 1645.
      (e) Zhao, X. J.; Zhao, Y.; Fu, G.; Zheng, N. F. Chem. Commun. 2015, 51, 12016.
      (f) Nash, D. J.; Restrepo, D. T.; Parra, N. S.; Giesler, K. E.; Penabade, R. A.; Aminpour, M.; Le, D.; Li, Z. Y.; Farha, O. K.; Harper, J. K.; Rahman, T. S.; Blair, R. G. ACS Omega 2016, 1, 1343.
      (g) Buschelberger, P.; Gartner, D.; Rodriguez, E. R.; Kreyenschmidt, F.; Koszinowski, K.; Wangelin, A. J. V.; Wolf, R. Chem.-Eur. J. 2017, 23, 3139.
      (h) Patel, H. A.; Rawat, M.; Patel, A. L.; Bedekar, A. V. Appl. Organomet. Chem. 2019, 33, e4767.

    10. [10]

      Heck, R. F.; Nolley, J. P. J. Org. Chem. 1972, 37, 2320.  doi: 10.1021/jo00979a024

    11. [11]

    12. [12]

      (a) Cermenati, L.; Fagnoni, M.; Albini, A. Can. J. Chem. 2003, 81, 560.
      (b) Yin, H. L.; Jin, Y.; Hertzog, J. E.; Mullane, K. C.; Carroll, P. J.; Manor, B. C.; Anna, J. M.; Schelter, E. J. J. Am. Chem. Soc. 2016, 138, 16266.
      (c) Deng, H. P.; Fan, X. Z.; Chen, Z. H.; Xu, Q. H.; Wu, J. J. Am. Chem. Soc. 2017, 139, 13579.
      (d) Park, G.; Yi, S. Y.; Jung, J. J.; Cho, E. J.; You, Y. M. Chem.-Eur. J. 2016, 22, 17790.
      (e) Mclean, E. B.; Gauchot, V.; Brunen, S.; Burns, D. J.; Lee, A. L. Chem. Commun. 2019, 55, 4238.

    13. [13]

      (a) Sun, W.; Gao, L. F.; Feng, X.; Sun, X.; Zheng, G. X. Eur. J. Org. Chem. 2018, 2018, 1121.
      (b) Song, C. E.; Lee, S. L. Chem. Rev. 2002, 102, 3495.
      (c) Du, J. P.; Qu, Z. P.; Dong, C.; Song, L. X.; Qin, Y.; Huang, N. Appl. Surf. Sci. 2018, 433, 1025.

    14. [14]

      (a) Mahyari, M.; Laeini, M. S.; Shaabani, A. Chem. Commun. 2014, 50, 7855.
      (b) Verma, S.; Nasir, R. B.; Nadagouda, M. N.; Varma, R. S. ACS Sustainable Chem. Eng. 2016, 4, 2333.

    15. [15]

      (a) Ping, K. F.; Alam, M.; Kaarik, M.; Leis, J.; Kongi, N.; Jarving, I.; Starkov, P. Synlett 2019, 30, 1536.
      (b) Karimpour, T.; Safaei, E.; Karimi, B. RSC Adv. 2019, 9, 14343.
      (c) Hu, P. H.; Tan, M. X.; Cheng, L.; Zhao, H. Y.; Feng, R.; Gu, W. J.; Han, W. Nat. Commun. 2019, 10, 2425.

    16. [16]

      Liu, L. C.; Wu, J. Q.; Ma, H. F.; Zhang, H.; Gu, J. F.; Li, Y. F. Chin. J. Org. Chem. 2019, 39, 1688(in Chinese).
       

    17. [17]

      Li, J. S.; Luo, Y. X.; Cheo, H. W.; Lan, Y.; Wu, J. Chem 2019, 5, 192.  doi: 10.1016/j.chempr.2018.10.006

    18. [18]

      Waters, W. A.; Waston, D. H. J. Chem. Soc. 1957, 253.

    19. [19]

      Leonard, E. C. J. Org. Chem. 1962, 27, 1921.  doi: 10.1021/jo01052a531

    20. [20]

      Atsuko, N.; Tadahiro, K. Chem. Pharm. Bull. 1990, 38, 1720.  doi: 10.1248/cpb.38.1720

    21. [21]

      Banks, R. E.; Madany, M. I. J. Fluorine Chem. 1985, 30, 211.  doi: 10.1016/S0022-1139(00)80890-8

    22. [22]

      Overberger, C. G.; Marullo, N. P.; Hiskey, R. G. J. Am. Chem. Soc. 1961, 83, 1374.  doi: 10.1021/ja01467a028

    23. [23]

      Ellingboe, E.; Fuson, R. C. J. Am. Chem. Soc. 1933, 55, 2960.  doi: 10.1021/ja01334a057

    24. [24]

      Hartmann, R. W.; Heindl, A.; Schwarz, W.; Schoenenberger, H. J. Med. Chem. 1984, 27, 819.  doi: 10.1021/jm00373a001

    25. [25]

      Carlisle, C. H.; Crowfoot, D. J. Chem. Soc. 1941, 6.

    26. [26]

      Kataoka, Y.; Makihira, I.; Utsunomiya, M.; Tani, K. J. Org. Chem. 1997, 62, 8540.  doi: 10.1021/jo9703461

    27. [27]

      Liu, J.; Li, B. Synth. Commun. 2007, 37, 3273.  doi: 10.1080/00397910701483340

    28. [28]

      Johnston, K. M.; Williams, G. H. J. Chem. Soc. 1960, 1168.

    29. [29]

      Zhu, D. H.; Lv, L. Y.; Qiu, Z. H.; Li, C. J. J. Org. Chem. 2019, 84, 6312.  doi: 10.1021/acs.joc.9b00649

    30. [30]

      Liu, D.; Li, Y. X.; Qi, X. T.; Liu, C.; Lan, Y.; Lei, A. W. Org. Lett. 2015, 17, 998.  doi: 10.1021/acs.orglett.5b00104

  • 加载中
    1. [1]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    2. [2]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    3. [3]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    4. [4]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    5. [5]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    6. [6]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    7. [7]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    8. [8]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    9. [9]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    10. [10]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    11. [11]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    12. [12]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    13. [13]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    14. [14]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    15. [15]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    16. [16]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    17. [17]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    18. [18]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    19. [19]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    20. [20]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

Metrics
  • PDF Downloads(12)
  • Abstract views(1535)
  • HTML views(248)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return