Citation: Cao Xiying, Luo Shihe, Yang Chongling, Xiao Ying, Li Xiaoyan, Zhang Junru, Wang Zhaoyang. Research Progress of Organic Polymer Fluorescence Sensor[J]. Chinese Journal of Organic Chemistry, ;2020, 40(12): 4046-4059. doi: 10.6023/cjoc202005063 shu

Research Progress of Organic Polymer Fluorescence Sensor

  • Corresponding author: Luo Shihe, pinky_r@163.com Yang Chongling, 2009103069@gdip.edu.cn Wang Zhaoyang, wangzy@scnu.edu.cn
  • Received Date: 23 May 2020
    Revised Date: 30 June 2020
    Available Online: 22 July 2020

    Fund Project: the Science and Technology Program of Guangzhou City 202002030362the Key Laboratory of Functional Molecular Engineering of Guangdong Province 2017kf01the National Natural Science Foundation of China 20772035the Science and Technology Project of Guangdong Province 2017A010103016Project supported by the National Natural Science Foundation of China (No. 20772035), the Science and Technology Project of Guangdong Province (No. 2017A010103016), the Key Laboratory of Functional Molecular Engineering of Guangdong Province (No. 2017kf01), and the Science and Technology Program of Guangzhou City (No. 202002030362)

Figures(14)

  • Organic fluorescent polymers have unique characteristics of fluorescent signal amplification and good optical properties, and can detect specific analytical species. Their sensing performance can be further improved through reasonable modification of their side chains. Nowadays, the organic fluorescent polymers are mainly prepared by metal coupling reactions, and there are also some syntheses involving in addition polymerization and condensation reactions. Taking the fluorescent source of these polymers as the main line, the research progress of the fluorescent organic polymers in the sensor field in recent years is systematically reviewed from the perspective of the type of reaction, especially their design and synthesis, sensing application, detection mechanism are summarized. In the future, it is still to be further investigated to design and synthesize novel multifunctional organic polymer fluorescence sensors as the key development direction.
  • 加载中
    1. [1]

      Kim, S.; Han, T.; Jeong, J.; Lee, H.; Ryou, M. H.; Lee, Y. M. Electrochim. Acta 2017, 241, 553.  doi: 10.1016/j.electacta.2017.04.129

    2. [2]

      Xiong, J.-F.; Luo, S.-H.; Wang, Q.-F.; Wang, Z.-Y. Des. Monomers Polym. 2013, 16, 389.  doi: 10.1080/15685551.2012.747156

    3. [3]

      Wang, Z.-Y.; Hou, X.-N.; Mao, Z.-Z.; Ye, R.-R.; Mo, Y.-Q.; Finlow, D.-E. Iran. Polym. J. 2008, 17, 791.

    4. [4]

      Graham-Gurysh, E.; Kelkar, S.; McCabe-Lankford, E.; Kuthirummal, N.; Brown, T.; Kock, N. D.; Mohs, A. M.; Levi-Polyachenko, N. ACS Appl. Mater. Interfaces 2018, 10, 7697.  doi: 10.1021/acsami.7b19503

    5. [5]

      Wu, S. S.; Chen, C. H.; Yang, H. T.; Wei, W.; Wei, M.; Zhang, Y. J.; Liu, S. Q. Sens. Actuators, B 2018, 273, 1047.  doi: 10.1016/j.snb.2018.07.013

    6. [6]

      Zhang, H.; Dong, X. Z.; Wang, J. H.; Guan, R. F.; Cao, D. X.; Chen, Q. F. ACS Appl. Mater. Interfaces 2019, 11, 32489.  doi: 10.1021/acsami.9b09545

    7. [7]

      Feng, L. H.; Deng, Y.; Wang, X. J.; Liu, M. G. Sens. Actuators, B 2017, 245, 441.  doi: 10.1016/j.snb.2017.01.184

    8. [8]

      Reisch, A.; Trofymchuk, K.; Runser, A.; Fleith, G.; Rawiso, M.; Klymchenko, A. S. ACS Appl. Mater. Interfaces 2017, 9, 43030.  doi: 10.1021/acsami.7b12292

    9. [9]

      Tiwari, M.; Kumar, A.; Shankar, U.; Prakash, R. Biosens. Bioelectron. 2016, 85, 529.  doi: 10.1016/j.bios.2016.05.049

    10. [10]

      Mettra, B.; Appaix, F.; Olesiak-Banska, J.; Le Bahers, T.; Leung, A.; Matczyszyn, K.; Samoc, M.; van der Sanden, B.; Monnereau, C.; Andraud, C. ACS Appl. Mater. Interfaces 2016, 8, 17047.  doi: 10.1021/acsami.6b02936

    11. [11]

      Pang, C.-M; Luo, S.-H.; Hao, Z.-F.; Gao, J.; Huang, Z.-H.; Yu, J.-H.; Yu, S.-M.; Wang, Z.-Y. Chin. J. Org. Chem. 2018, 38, 2606(in Chinese).
       

    12. [12]

      Cai, L.; Xiao, H. M.; Chen, S.; Fu, J. L.; Zhang, Z. H. Microchem. J. 2020, 154, 104603.  doi: 10.1016/j.microc.2020.104603

    13. [13]

      Wu, Y. Z.; Dong, Y.; Li, J. F.; Huang, X. B.; Cheng, Y. X.; Zhu, C. J. Chem. Asian J. 2011, 6, 2725.  doi: 10.1002/asia.201100534

    14. [14]

      Long, Y. Y.; Chen, H. B.; Wang, H. M.; Peng, Z.; Yang, Y. F.; Zhang, G. Q.; Li, N.; Liu, F.; Pei, J. Anal. Chim. Acta 2012, 744, 82.  doi: 10.1016/j.aca.2012.07.028

    15. [15]

      Geng, T. M.; Ye, S. N.; Wang, Y; Zhu, H.; Wang, X.; Liu, X. Talanta 2017, 165, 282.  doi: 10.1016/j.talanta.2016.12.046

    16. [16]

      Balan, B.; Vijayakumar, C.; Tsuji, M.; Saeki, A.; Seki, S. J. Phys. Chem. B 2012, 116, 10371.

    17. [17]

      Hu, Z.; Yang, T.; Liu, J.; Zhang, Z.; Feng, G. Talanta 2020, 207, 120203.  doi: 10.1016/j.talanta.2019.120203

    18. [18]

      Li, J. X.; Xue, F. L.; Tan, Y. H.; Luo, S. H.; Wang, Z. Y. Acta Chim. Sinca 2011, 69, 1688(in Chinese).

    19. [19]

      Li, J. X.; Wang, Z. Y.; Xue, F. L.; Luo, S. H. Acta Chim. Sinica 2011, 69, 2835(in Chinese).

    20. [20]

      Liu, J.-L.; Xu, C.-L.; Yang, T.; Hu, Z.-R.; Zhang, Z.-Q.; Feng, G.-D. Spectrochim. Acta, Part A 2019, 222, 117239.  doi: 10.1016/j.saa.2019.117239

    21. [21]

      Fan, L.-J.; Zhang, Y.; Jones, W. E. Macromolecules 2005, 38, 2844.  doi: 10.1021/ma047983v

    22. [22]

      Fan, L.-J.; Jones, W. E. J. Am. Chem. Soc. 2006, 128, 6784.  doi: 10.1021/ja0612697

    23. [23]

      Wu, W.; Chen, A. T.; Tong, L. Y.; Qing, Z. Q.; Langone, K. P.; Bernier, W. E.; Jones, W. E. ACS Sens. 2017, 2, 1337.  doi: 10.1021/acssensors.7b00400

    24. [24]

      Ma, X.; Song, F. Y.; Wang, L.; Cheng, Y. X.; Zhu, C. J. J. Polym. Sci., Part A:Polym. Chem. 2012, 50, 517.  doi: 10.1002/pola.25059

    25. [25]

      Chen, Z.; Xue, C. H.; Shi, W.; Luo, F. T.; Green, S.; Chen, J.; Liu, H. Y. Anal. Chem. 2004, 76, 6513.  doi: 10.1021/ac049163m

    26. [26]

      Li, F.; Meng, F. D.; Wang, Y. X.; Zhu, C. J.; Cheng, Y. X. Tetrahedron 2015, 71, 1700.  doi: 10.1016/j.tet.2015.01.052

    27. [27]

      Zeng, W. F.; Yong, X.; Yang, X. D.; Yan, Y. C.; Lu, X. W.; Qu, J. Q.; Liu, R. Y. Macromol. Chem. Phys. 2014, 215, 1370.  doi: 10.1002/macp.201400110

    28. [28]

      Ji, X. F.; Yao, Y.; Li, J. Y.; Yan, X. Z.; Huang, F. H. J. Am. Chem. Soc. 2013, 135, 74.  doi: 10.1021/ja3108559

    29. [29]

      Adachi, N.; Okada, M.; Sugeno, M.; Norioka, T. J. Appl. Polym. Sci. 2016, 133, 1.

    30. [30]

      Long, Y. Y.; Chen, H. B.; Yang, Y.; Wang, H. M.; Yang, Y. F.; Li, N.; Li, K. A.; Pei, J.; Liu, F. Macromolecules 2009, 42, 6501.  doi: 10.1021/ma900756w

    31. [31]

      Geng, T.-M.; Zhu, H.; Song, W.; Zhu, F.; Wang, Y. J. Mater. Sci. 2016, 51, 4104.  doi: 10.1007/s10853-016-9732-y

    32. [32]

      Geng, T. M.; Li, D. K.; Zhu, Z. M.; Zhang, W. Y.; Ye, S. N.; Zhu, H.; Wang, Z. Q. Anal. Chim. Acta 2018, 1011, 77.  doi: 10.1016/j.aca.2018.01.002

    33. [33]

      Xiong, J.-F.; Li, J.-X.; Mo, G.-Z.; Huo, J.-P.; Liu, J.-Y.; Chen, X.-Y.; Wang, Z.-Y. J. Org. Chem. 2014, 79, 11619.  doi: 10.1021/jo502281b

    34. [34]

      Cao, L.; Xiong, J.-F.; Wu, Y.-C.; Ding, S.; Li, M.-B.; Xie, F.; Ma, Z.-H.; Wang, Z.-Y. Chin. J. Org. Chem. 2016, 36, 2053(in Chinese).
       

    35. [35]

      Wang, B.-W.; Jiang, K.; Li, J.-X.; Luo, S.-H.; Wang, Z.-Y.; Jiang, H.-F. Angew. Chem., Int. Ed. 2020, 59, 2338.  doi: 10.1002/anie.201914333

    36. [36]

      Jiang, K.; Luo, S.-H.; Pang, C.-M.; Wang, B.-W.; Wu, H.-Q.; Wang, Z.-Y. Dyes Pigm. 2019, 162, 367.  doi: 10.1016/j.dyepig.2018.10.041

    37. [37]

      Jiang, K.; Chen, S.-H.; Luo, S.-H.; Pang, C.-M.; Wu, X.-Y.; Wang, Z.-Y. Dyes Pigm. 2019, 167, 164.  doi: 10.1016/j.dyepig.2019.04.023

    38. [38]

      Mi, H.-Y.; Liu, J.-L.; Guan, M.-M.; Liu, Q.-W.; Zhang, Z.-Q.; Feng, G.-D. Talanta 2018, 187, 314.  doi: 10.1016/j.talanta.2018.05.036

    39. [39]

      Wang, H. M.; Peng, Z.; Long, Y. Y.; Chen, H. B.; Yang, Y. F.; Li, N.; Liu, F. Talanta 2012, 94, 216.  doi: 10.1016/j.talanta.2012.03.024

    40. [40]

      Huang, Y. Q.; Yao, X.; Zhang, R.; Lang, O. Y.; Jiang, R. C.; Liu, X. F.; Song, C. X.; Zhang, G. W.; Fan, Q. L.; Wang, L. H.; Huang, W. ACS Appl. Mater. Interfaces 2014, 6, 19144.  doi: 10.1021/am505113p

    41. [41]

      Zhao, X. Y.; Pinto, M. R.; Hardison, L. M.; Mwaura, J.; Muller, J.; Jiang, H.; Witker, D.; Reynolds, J. R.; Schanze, K. S. V. Macromolecules 2006, 39, 6355  doi: 10.1021/ma0611523

    42. [42]

      Xie, Y. H.; Zhao, R.; Tan, Y.; Zhang, X.; Liu, F.; Jiang, Y. Y.; Tan, C. Y. ACS Appl. Mater. Interfaces 2012, 4, 405.  doi: 10.1021/am201470a

    43. [43]

      Komarova, E.; Bogomolova, A.; Aldissi, M. Polym. Int. 2015, 64, 1451.  doi: 10.1002/pi.4940

    44. [44]

      Liu, B.; Bazan, G. C. J. Am. Chem. Soc. 2006, 128, 1188.  doi: 10.1021/ja055382t

    45. [45]

      Kwon, N. Y.; Kim, D.; Son, J. H.; Jang, G. S.; Lee, J. H.; Lee, T. S. Macromol. Rapid Commun. 2011, 32, 1061.  doi: 10.1002/marc.201100255

    46. [46]

      Yang, H.; Duan, C. H.; Wu, Y. S.; Lv, Y.; Liu, H.; Lv, Y. L.; Xiao, D. B.; Huang, F.; Fu, H. B.; Tian, Z. Y. Part. Part. Syst. Charact. 2013, 30, 972.  doi: 10.1002/ppsc.201300204

    47. [47]

      Feng, L. H.; Guo, L. X.; Wang, X. J. Biosens. Bioelectron. 2017, 87, 514.  doi: 10.1016/j.bios.2016.08.114

    48. [48]

      Wang, N.; Arulkumar, M.; Chen, X.-Y.; Wang, B.-W.; Chen, S.-H.; Yao, C.; Wang, Z.-Y. Chin. J. Org. Chem. 2019, 39, 2771(in Chinese).
       

    49. [49]

      Chen, S.-H.; Jiang, K.; Xiao, Y.; Cao, X.-Y.; Arulkumar, M.; Wang, Z.-Y. Dyes Pigm. 2020, 175, 108157  doi: 10.1016/j.dyepig.2019.108157

    50. [50]

      Wu, Y.-C.; You, J.-Y.; Guan, L.-T.; Shi, J.; Cao, L.; Wang, Z.-Y. Chin. J. Org. Chem. 2015, 35, 2465(in Chinese).
       

    51. [51]

      Jiang, K.; Cao, L.; Hao, Z.-F.; Chen, M.-Y.; Cheng, J.-L.; Li, X.; Xiao, P.; Chen, L.; Wang, Z.-Y. Chin. J. Org. Chem. 2017, 37, 2221(in Chinese).
       

    52. [52]

      Giri, D.; Bankura. A.; Patra, S. K. Polymer 2018, 158, 338.  doi: 10.1016/j.polymer.2018.10.069

    53. [53]

      Diao, H. P.; Guo, L. X.; Liu, W.; Feng, L. H. Spectrochim. Acta, Part A 2018, 196, 274.  doi: 10.1016/j.saa.2018.02.036

    54. [54]

      Jo, S.; Kim, J.; Noh, J.; Kim, D.; Jang, G.; Lee, N.; Lee, E.; Lee, T. S. ACS Appl. Mater. Interfaces 2014, 6, 22884.  doi: 10.1021/am507206x

    55. [55]

      Yu, Y. G.; Xu, W.; Fu, Y. Y.; Cao, H. M.; He, Q. G..; Cheng, J. G. Dyes Pigm. 2020, 172, 107852.  doi: 10.1016/j.dyepig.2019.107852

    56. [56]

      Wu, Y.-C.; You. J.-Y.; Jiang, K.; Xie, J.-C.; Li, S.-L.; Cao, D.; Wang, Z.-Y. Dyes Pigm. 2017, 140, 47.  doi: 10.1016/j.dyepig.2017.01.025

    57. [57]

      Zhang, H. M.; Wu, Y. C.; You, J. Y.; Cao, L.; Ding, S.; Jiang, K.; Wang, Z. Y. Chin. J. Org. Chem. 2016, 36, 2559(in Chinese).
       

    58. [58]

      Zhang, H. C.; Yang, K.; Chen, C.; Wang, Y. H.; Zhang, Z. Z.; Tang, L. L.; Sun, Q. K.; Xue, S. F.; Yang, W. J. Polymer 2018, 149, 266.  doi: 10.1016/j.polymer.2018.07.011

    59. [59]

      Wang, C.-H.; Nesterov, E. E. Chem. Commun. 2019, 55, 8955.  doi: 10.1039/C9CC04123K

    60. [60]

      Tang, Y. L.; Liu, Y.; Cao, A. Anal. Chem. 2013, 85, 825.  doi: 10.1021/ac302840t

    61. [61]

      Seo, S.; Kim, J.; Jang, G.; Kim, D.; Lee, T. S. ACS Appl. Mater. Interfaces 2014, 6, 918.  doi: 10.1021/am405120y

    62. [62]

      Wei, G.; Meng, F. D.; Wang, Y. X.; Cheng, Y. X.; Zhu, C. J. Macromol. Rapid Commun. 2014, 35, 2077.  doi: 10.1002/marc.201400558

    63. [63]

      Zhang, J. Y.; Zhao, L. K.; Dong, L. J.; Nie, X. Y.; Cheng, Y. Q. Talanta 2018, 190, 475.  doi: 10.1016/j.talanta.2018.08.003

    64. [64]

      Zhang, Z.; Fang, X. F.; Liu, Z. H.; Liu, H. C.; Chen, D. D.; He, S. Q.; Zheng, J.; Yang, B.; Qin, W. P.; Zhang, X. J.; Wu, C. F. Angew. Chem., Int. Ed. 2020, 59, 3691.  doi: 10.1002/anie.201914397

    65. [65]

      Yang, Y. Q.; Fan, X. X.; Li, L.; Yang, Y. M.; Nuernisha, A.; Xue, D. W.; He, C.; Qian, J.; Hu, Q. L.; Chen, H.; Liu, J.; Huang, W. ACS Nano 2020, 14, 2509.  doi: 10.1021/acsnano.0c00043

    66. [66]

      Gong, D. Y.; Cao, T.; Han, S. C.; Zhu, X. T.; Iqbal, A.; Liu, W. S.; Qin, W. W.; Guo, H. C. Sens. Actuators, B 2017, 252, 577.  doi: 10.1016/j.snb.2017.06.041

    67. [67]

      Geng, T.-M.; Zhang, W.-Y.; Li, D.-K.; Xia, H.-Y.; Wang, Y.; Wang, Z.-Q.; Zhu, Z.-M.; Zheng, Q. J. Environ. Chem. Eng. 2017, 5, 906.  doi: 10.1016/j.jece.2017.01.017

    68. [68]

      Geng, T.-M.; Wang, X.; Zhu, F.; Jiang, H.; Wang, Y. Bull. Mater. Sci. 2017, 40, 187.  doi: 10.1007/s12034-016-1325-5

    69. [69]

      Vallejos, S.; Munoz, A.; Ibeas, S.; Serna, F.; Garcia, F. C.; Garcia, J. M. ACS Appl. Mater. Interfaces 2015, 7, 921  doi: 10.1021/am507458k

    70. [70]

      Chen, S.-H.; Pang, C.-M.; Chen, X.-Y.; Yan, Z.-H.; Huang, S.-M.; Li, X.-D.; Zhong, Y.-T.; Wang, Z.-Y. Chin. J. Org. Chem. 2019, 39, 1846(in Chinese).
       

    71. [71]

      Pang, C.-M.; Luo, S.-H.; Jiang, K.; Wang, B.-W.; Chen, S.-H.; Wang, N.; Wang, Z.-Y. Dyes Pigm. 2019, 170, 107651.  doi: 10.1016/j.dyepig.2019.107651

    72. [72]

      Buruiana, E. C.; Stroea, L.; Buruiana, T. Polym. J. 2009, 41, 694.  doi: 10.1295/polymj.PJ2009012

    73. [73]

      Geng, T.-M.; Guo, C.; Dong, Y.-J.; Chen, M.; Wang, Y. Polym. Adv. Technol. 2016, 27, 90.  doi: 10.1002/pat.3603

    74. [74]

      Terra, I. A. A.; Sanfelice, R. C.; Scagion, V. P.; Tomazio, N. B.; Mendonca, C. R.; Nunes, L. A. O.; Correa, D. S. J. Appl. Polym. Sci. 2019, 136, 47775.  doi: 10.1002/app.47775

    75. [75]

      Zhang, L. Q.; Su, F. Y.; Buizer, S.; Kong, X. X.; Lee, F.; Day, K.; Tian, Y. Q.; Meldrum, D. R. Chem. Commun. 2014, 50, 6920.  doi: 10.1039/C4CC01110D

    76. [76]

      Christopherson, C. J.; Mayder, D. M.; Poisson, J.; Paisley, N. R.; Tonge, C. M.; Hudson, Z. M. ACS Appl. Mater. Interfaces 2020, 12, 20000.  doi: 10.1021/acsami.0c05257

    77. [77]

      Wu, Y. C.; Liu, S. M.; Chen, Z. G.; Zhao, J. Q. Dyes Pigm. 2020, 173, 107924.  doi: 10.1016/j.dyepig.2019.107924

    78. [78]

      Wu, Y. C.; Shi, C. Q.; Chen, Z. G.; Zhou, Y. B.; Liu, S. M.; Zhao, J. Q. Polym. Chem. 2019, 10, 1399.  doi: 10.1039/C8PY01697F

    79. [79]

      Zhou, Z. X.; Huang, W. X.; Long, Y. B.; Chen, Y. Q.; Yu, Q. X.; Zhang, Y.; Liu, S. W.; Chi, Z. G.; Chen, X. D.; Xu, J. R. J. Mater. Chem. C 2017, 5, 8545.

    80. [80]

      Wu, Y. C.; Ji, J. Q.; Zhou, Y. B.; Chen, Z. G.; Liu, S. M.; Zhao, J. Q. Anal. Chim. Acta 2020, 1108, 35.

    81. [81]

      Gong, F. C.; Zou, W.; Wang, Q. G.; Deng, R. X.; Cao, Z.; Gu, T. T. Microchem. J. 2019, 148, 767.  doi: 10.1016/j.microc.2019.05.057

    82. [82]

      Wang, L.; Song, F. Y.; Hou, J. L.; Li, J. F.; Cheng, Y. X.; Zhu, C. J. Polymer 2012, 53, 6033.  doi: 10.1016/j.polymer.2012.10.047

    83. [83]

      Song, F. Y.; Wei, G.; Wang, L.; Jiao, J. M.; Cheng, Y. X.; Zhu, C. J. J. Org. Chem. 2012, 77, 4759.  doi: 10.1021/jo3005233

    84. [84]

      Xu, Y.; Meng, J.; Meng, L. X.; Dong, Y.; Cheng, Y. X.; Zhu, C. J. Chem.-Eur. J. 2010, 16, 12898.  doi: 10.1002/chem.201001198

    85. [85]

      Meng, F. D.; Li, F.; Yang, L.; Wang, Y. X.; Quan, Y. W.; Cheng, Y. X. Polym. Chem. 2018, 56, 1282.  doi: 10.1002/pola.29009

    86. [86]

      Song, F. Y.; Ma, X.; Hou, J. L.; Huang, X. B.; Cheng, Y. X.; Zhu, C. J. Polymer 2011, 52, 6029.  doi: 10.1016/j.polymer.2011.11.017

    87. [87]

      Wang, L.; Li, F.; Liu, X. H.; Wei, G.; Cheng, Y. X.; Zhu, C. J. J. Polym. Sci., Part A:Polym. Chem. 2013, 51, 4070.  doi: 10.1002/pola.26813

    88. [88]

      Dong, Y.; Wu, Y. Z.; Jiang, X. X.; Huang, X. B.; Cheng, Y. X.; Zhu, C. J. Polymer 2011, 52, 5811.  doi: 10.1016/j.polymer.2011.10.034

    89. [89]

      Hou, J. L.; Song, F. Y.; Wang, L.; Wei, G.; Cheng, Y. X.; Zhu, C. J. Macromolecules 2012, 45, 7835.  doi: 10.1021/ma301553y

    90. [90]

      Wei, G.; Zhang, S. W.; Dai, C. H.; Quan, Y. W.; Cheng, Y. X.; Zhu, C. J. Chem.-Eur. J. 2013, 19, 16066.  doi: 10.1002/chem.201302726

    91. [91]

      Childress, E. S.; Roberts, C. A.; Sherwood, D. Y.; LeGuyader, C. L. M.; Harbron, E. J. Anal. Chem. 2012, 84, 1235.  doi: 10.1021/ac300022y

    92. [92]

      Du, Y.; Song, Y. H.; Hao, J.; Cai, K. Y.; Liu, N.; Yang, L.; Wang, L. Talanta 2019, 198, 316.  doi: 10.1016/j.talanta.2019.02.006

    93. [93]

      Geng, T. M.; Zhu, Z. M.; Wang, X.; Xia, H. Y.; Wang, Y.; Li, D. K. Sens. Actuators, B 2017, 244, 334.  doi: 10.1016/j.snb.2017.01.005

    94. [94]

      Hegarty, C.; Kirkwood, S.; Cardosi, M. F.; Lawrence, C. L.; Taylor, C. M.; Smith, R. B.; Davis, J. Microchem. J. 2018, 139, 210.  doi: 10.1016/j.microc.2018.02.024

    95. [95]

      Smith, R. C.; Tennyson, A. G.; Lim, M. H.; Lippard, S. J. Org. Lett. 2005, 7, 3573.  doi: 10.1021/ol0513903

    96. [96]

      Gao, Z.-Y.; Zhang, X.; Xing, S.; Lu, Q.; Yao, J.-S.; Liu, Q.-Z.; Qiao, C.-D.; Xie, R.-X.; Ding, B.-Y. Dyes Pigm. 2019, 168, 68.  doi: 10.1016/j.dyepig.2019.04.030

    97. [97]

      Fei, T.; Jiang, K.; Liu, S.; Zhang, T. RSC Adv. 2014, 4, 21429.  doi: 10.1039/c4ra01389a

    98. [98]

      Geng, T. M.; Zhu, Z. M.; Zhang, W. Y.; Wang, Y. J. Mater. Chem. A 2017, 5, 7612.  doi: 10.1039/C7TA00590C

    99. [99]

      Geng, T. M.; Ye, S. N.; Zhu, Z. M.; Zhang, W. Y. J. Mater. Chem. A 2018, 6, 2808.  doi: 10.1039/C7TA08251G

    100. [100]

      Tang, Q.; Nie, H.-M.; Gong, C.-B.; Liu, H.-D.; Xiao, K. RSC Adv. 2015, 5, 3888.  doi: 10.1039/C4RA13277G

    101. [101]

      Miyata, M.; Chujo, Y. Polym. J. 2002, 34, 967.  doi: 10.1295/polymj.34.967

    102. [102]

      Shan, Y. R.; Yao, W. J.; Liang, Z. Q.; Zhu, L. H.; Yang, S. B.; Ruan, Z. J. Dyes Pigm. 2018, 156, 1.  doi: 10.1016/j.dyepig.2018.03.060

    103. [103]

      Kumar, V.; Maiti, B.; Chini, M. K.; De, P.; Satapathi, S. Sci. Rep. 2019, 9, 7269.  doi: 10.1038/s41598-019-43836-w

    104. [104]

      Bao, Y. Y.; Wang, T. S.; Li, Q. B.; Du, F. F.; Bai, R. K.; Smet, M.; Dehaen, W. Polym. Chem. 2013, 5, 792.

    105. [105]

      Liu, Z. S.; Zeng, H.; Zhang, W. J.; Song, C.; Yang, F.; Liu, Y.; Zhu, J. Polymer 2019, 172, 152.  doi: 10.1016/j.polymer.2019.03.063

    106. [106]

      Yao, C. Z.; Li, Y. M.; Wang, Z. X.; Song, C. Z.; Hu, X. L.; Liu, S. Y. ACS Nano 2020, 14, 1919.  doi: 10.1021/acsnano.9b08285

    107. [107]

      Chen, J.; Tang, Y.; Wang, H.; Zhang, P. S.; Li, Y.; Jiang, J. H. J. Colloid Interface Sci. 2016, 484, 298.  doi: 10.1016/j.jcis.2016.09.009

    108. [108]

      Hiruta, Y.; Funatsu, T.; Matsuura, M.; Wang, J.; Ayano, E.; Kanazawa, H. Sens. Actuators, B 2015, 207, 724.  doi: 10.1016/j.snb.2014.10.065

    109. [109]

      Su, F. Y.; Agarwal, S.; Pan, T. T.; Qiao, Y.; Zhang, L. Q.; Shi, Z. W.; Kong, X. X.; Day, K.; Chen, M. W.; Meldrum, D.; Kodibagkar, V. D.; Tian, Y. Q. ACS Appl. Mater. Interfaces 2018, 10, 1556.  doi: 10.1021/acsami.7b15796

    110. [110]

      Qian, C.-G.; Zhu, S.; Feng, P.-J.; Chen, Y.-L.; Yu, J.-C.; Tang, X.; Liu, Y.; Shen, Q.-D. ACS Appl. Mater. Interfaces2015, 7, 18581.  doi: 10.1021/acsami.5b04987

    111. [111]

      Peng, H.; Soeller, C.; Travas-Sejdic, J. Chem. Commun. 2006, 35, 3735.

    112. [112]

      Sun, B.; Sun, M.-J.; Gu, Z.; Shen, Q.-D.; Jiang, S.-J.; Xu, Y.; Wang, Y. Macromolecules 2010, 43, 10348.  doi: 10.1021/ma101680g

    113. [113]

      Ma, H. C.; Qin, Y. F.; Yang, Z. M.; Yang, M. Y.; Ma, Y. C.; Yin, P.; Yang, Y.; Wang, T.; Lei, Z. Q.; Yao, X. Q. ACS Appl. Mater. Interfaces 2018, 10, 20064.  doi: 10.1021/acsami.8b05073

    114. [114]

      Sabater, P.; Zapata, F.; Bastida, A.; Caballero, A. Org. Biomol. Chem. 2018, 18, 3858.

    115. [115]

      Wang, G. J.; Zhang, R. C.; Xu, C.; Zhou, R. Y.; Dong, J.; Bai, H. T.; Zhan, X. W. ACS Appl. Mater. Interfaces 2014, 3, 11136.

    116. [116]

      Fu, X. C.; Bai, H. T.; Lyu, F. T.; Liu, L. B.; Wang, S. Chem. Res. Chin. Univ. 2020, 36, 237.  doi: 10.1007/s40242-020-0012-7

    117. [117]

      Khatoon, S. S.; Chen, Y. Y.; Zhao, T.; Liu, L. B.; Wang, S. Biomater. Sci. 2020, 8, 2156.  doi: 10.1039/C9BM01912J

    118. [118]

      Wang, Y. X.; Li, S L.; Zhang, P. B.; Bai, H. T.; Feng, L. H.; Lv, F. T.; Liu, L. B.; Wang, S. Adv. Mater. 2018, 30.

    119. [119]

      Liu, Y. Q.; Tian, L. Y.; Li, Y.; Chen, Y. Y.; Chen, Y. D.; Liu, L. B.; Wang, S. ACS Appl. Mater. Interfaces 2019, 12, 3438.

    120. [120]

      Liu, L.; Wang, X. Y.; Zhu, S. X.; Yao, C.; Ban, D. D.; Liu, R. H.; Li, L. D.; Wang, S. Chem. Mater. 2020, 32, 438.  doi: 10.1021/acs.chemmater.9b04034

    121. [121]

      Zhang, P. B.; Xu, C. L.; Zhou, X.; Qi, R. L.; Liu, L. B.; Lv, F. T.; Li, Z. P.; Wang, S. Colloids Surf., B 2020, 188.

    122. [122]

      Zhu, C. L.; Yang, Q.; Liu, L. B.; Wang, S. Angew. Chem., Int. Ed. 2011, 50, 9607.  doi: 10.1002/anie.201103381

    123. [123]

      Yuan, H. T.; Zhao, H.; Peng, K.; Qi, R. L.; Bai, H. T.; Zhang, P. B.; Huang, Y. M.; Lv, F. T.; Liu, L. B.; Bao, J. C.; Wang, S. ACS Appl. Mater. Interfaces 2020, 12, 21263.  doi: 10.1021/acsami.9b17783

    124. [124]

      Fernandez-Alonso, S.; Corrales, T.; Pablos, J. L.; Catalina, F. Sens. Actuators, B 2018, 270, 256.  doi: 10.1016/j.snb.2018.05.030

    125. [125]

      Jiang, Y. Y.; Cui, D.; Fang, Y.; Zhen, X.; Upputuri, P. K.; Pramanik, M.; Ding, D.; Pu, K. Y. Biomaterials 2017, 145, 168.  doi: 10.1016/j.biomaterials.2017.08.037

    126. [126]

      Hong, S. W.; Ahn, C. H.; Huh, J.; Jo, W. H. S. Macromolecules 2006, 39, 7694.  doi: 10.1021/ma061175h

    127. [127]

      Alvarez-Diaz, A.; Salinas-Castillo, A.; Camprubi-Robles, M.; Costa-Fernandez, J. M.; Pereiro, R.; Mallavia, R.; Sanz-Medel, A. Anal. Chem. 2011, 83, 2712.  doi: 10.1021/ac103268r

    128. [128]

      Rochat, S.; Swager, T.-M. Angew. Chem., Int. Ed. 2014, 53, 9792.  doi: 10.1002/anie.201404439

    129. [129]

      Tavoli, F.; Alizadeh, N. Anal. Chim. Acta 2016, 946, 88.  doi: 10.1016/j.aca.2016.10.008

    130. [130]

      Das, K. R.; Antony, M. J.; Varghese, S. Polymer 2019, 181, 121747.  doi: 10.1016/j.polymer.2019.121747

  • 加载中
    1. [1]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    4. [4]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    7. [7]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    8. [8]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    9. [9]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    10. [10]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    11. [11]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    12. [12]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    13. [13]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    14. [14]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    15. [15]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    16. [16]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    17. [17]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    18. [18]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    19. [19]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    20. [20]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

Metrics
  • PDF Downloads(136)
  • Abstract views(5673)
  • HTML views(1429)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return