Citation: Lu Lingling, Li Yiming, Jiang Xuefeng. Visible-Light-Promoted Diiodination of Alkynes Using Sodium Iodide[J]. Chinese Journal of Organic Chemistry, ;2020, 40(10): 3354-3361. doi: 10.6023/cjoc202005062 shu

Visible-Light-Promoted Diiodination of Alkynes Using Sodium Iodide

  • Corresponding author: Jiang Xuefeng, xfjiang@chem.ecnu.edu.cn
  • Received Date: 23 May 2020
    Revised Date: 26 June 2020
    Available Online: 15 July 2020

    Fund Project: the National Natural Science Foundation of China 21722202Project supported by the National Key Research and Development Program of China (No. 2017YFD0200500), and the National Natural Science Foundation of China (Nos. 21971065, 21722202, 21672069)the National Natural Science Foundation of China 21971065the National Natural Science Foundation of China 21672069the National Key Research and Development Program of China 2017YFD0200500

Figures(2)

  • 1, 2-Diiodoalkenes can be used as precursors for synthesis of functional molecules such as heterocyclic drugs and organic conjugated materials due to their derivability of functional groups. Herein, alkynes can be converted into 1, 2-trans-diiodioalkenes efficiently and conveniently by using inexpensive and stable sodium iodide as iodine source and air as oxidant under the visible-light (blue light) with normal temperature and atmospheric pressure. The corresponding reactions were operated under mild conditions with inexpensive and easily accessible reagents, which obviate the need of transition-metal-catalysts or oxidizing reagents. Meanwhile, this method is compatible with a wide range of substrates, including terminal and internal alkynes even the peptide and carbohydrates containing a variety of heteroatoms and active hydrogen.
  • 加载中
    1. [1]

      (a) Seechurn, C. C. J.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem., Int. Ed. 2012, 51, 5062.
      (b) Piontek, A.; Bisz, E.; Szostak, M. Angew. Chem., Int. Ed. 2018, 57, 11116.
      (c) King, A. O.; Yasuda, N. In Organometallics in Process Chemistry, Springer, Berlin, 2004, pp. 205~245.
      (d) Ian, W. Ph.D. Dissertation, Durham University, Durham, 2011.
      (e) Zeng, X.; Liu, S.; Yang, Y.; Yang, Yi; Hammond, G. B.; Xu, B. Chem 2020, 6, 1018.

    2. [2]

      (a) Zani, L.; Dessì, A.; Franchi, D.; Calamante, M.; Reginato, G.; Mordini, A. Coord. Chem. Rev. 2019, 392, 177.
      (b) Kawabata, K.; Saito, M.; Osaka, I.; Takimiya, K. J. Am. Chem. Soc. 2016, 138, 7725.
      (c) Furukawa, S.; Yasuda, T. J. Mater. Chem. A 2019, 7, 14806.
      (d) Chen, L.; Zeng, M.; Weng, C.; Tan, S.; Shen, P. ACS Appl. Mater. Interfaces 2019, 11, 48134.
      (e) Tovar, J. D. Synthesis 2011, 2387.
      (f) Olla, T.; Ibraikulov, O. A.; Ferry, S.; Boyron, O.; Méry, S.; Heinrich, B.; Heiser, T.; Lévêque, P.; Leclerc, N. Macromolecules 2019, 52, 8006.

    3. [3]

      (a) Atzrodt, J.; Derdau, V.; Fey, T.; Zimmermann, J. Angew. Chem., Int. Ed. 2007, 46, 7744.
      (b) Liu, C.; Chen, Z.; Su, C.; Zhao, X.; Gao, Q.; Ning, G.-H.; Zhu, H.; Tang, W.; Leng, K.; Fu, W.; Tian, B.; Peng, X.; Li, J.; Xu, Q.-H.; Zhou, W.; Loh, K. P. Nat. Commun. 2018, 9, 80.

    4. [4]

      (a) Welch, M. J.; Redvanly, C. S. In The Hand Book of Radiopharmaceuticals: Radiochemistry and Applications, Ed.: Finn, R., Wiley, New York, 2003, p. 423.
      (b) Hallouard, F.; Anton, N.; Choquet, P.; Constantinesco, A.; Vandamme, T. Biomaterials 2010, 31, 6249.
      (c) Zimprich, F.; Rath, J.; Mauritz, M.; Zulehner, G.; Hilfer, Eva.; Cetin, H.; Kasprian, G.; Auff, E. J. Neurol. 2017, 264, 1209.

    5. [5]

      (a) Gkotsi, D. S.; Ludewig, H.; Sharma, S. V.; Connolly, J. A.; Dhaliwal, J.; Wang, Y.; Unsworth, W. P.; Taylor, R. J. K.; McLachlan, M. M. W.; Shanahan, S.; Naismith, J. H.; Goss, R. J. M. Nat. Chem. 2019, 11, 1091.
      (b) Butler, A.; Sandy, M. Nature 2009, 460, 848.
      (c) Latham, J.; Brandenburger, E.; Shepherd, A.; Menon, B. R. K.; Micklefield, J. Chem. Rev. 2018, 118, 232.

    6. [6]

      Li, Y.; Mou, T.; Lu, L.; Jiang, X. Chem. Commun., 2019, 55, 14299.  doi: 10.1039/C9CC07655G

    7. [7]

      (a) Banerjee, S.; Khatri, H.; Balasanthiran, V.; Koodali, R. T.; Sereda, G. Tetrahedron 2011, 67, 5717.
      (b) Ranu, B. C.; Adak, L.; Chattopadhyay, K. J. Org. Chem. 2008, 73, 5609.
      (c) Kimura, T.; Nishimura, Y.; Ishida, N.; Momochi, H.; Yamashita, H.; Satoh, T. Tetrahedron Lett. 2013, 54, 1049.

    8. [8]

      (a) Bao, Y.; Yang, X.; Zhou, Q.; Yang, F. Org. Lett. 2018, 20, 1966.
      (b) Lin, Y.; Lu, G.; Cai, C.; Yi, W. Org. Lett. 2015, 17, 3310.

    9. [9]

      Li, J. H.; Tang, S. Synth. Commun. 2005, 35, 105.  doi: 10.1081/SCC-200046514

    10. [10]

      (a) Liang, Y.; Tao, L.-M.; Zhang, Y.-H.; Li, J.-H. Synthesis 2008, 3988.
      (b) Raff, G.; Belot, S.; Balme, G.; Monteiro, N. Org. Biomol. Chem. 2011, 9, 1474.

    11. [11]

      Schuh, K.; Glorius, F. Synthesis 2007, 2297.

    12. [12]

      Shen, G.; Yang, B.; Huang, X.; Hou, Y.; Gao, H.; Cui, J.; Cui, C.; Zhang, T. J. Org. Chem. 2017, 82, 3798.  doi: 10.1021/acs.joc.7b00162

    13. [13]

      Woodward, S.; Ackermann, M.; Ahirwar, S. K.; Burroughs, L.; Garrett, M. R.; Ritchie, J.; Shine, J.; Tyril, B.; Simpson, K.; Woodward, P. Chem. Eur. J. 2017, 3, 7819.

    14. [14]

      (a) Sun, A.; Lauher, J. W.; Goroff, N. S. Science 2006, 312, 1030.
      (b) DeCicco, R. C.; Luo, L.; Goroff, N. S. Acc. Chem. Res. 2019, 52, 2080.

    15. [15]

      Terent'ev, A. O.; Borisov, D. A.; Krylov, I. B.; Nikishin, G. I. Synth. Commun. 2007, 37, 3151.  doi: 10.1080/00397910701545171

    16. [16]

      (a) Dolbier, W. R.; Duan, J.-X.; Chen, Q.-Y. J. Org. Chem. 1998, 63, 9486.
      (b) Li, J.-H.; Tang, S. Synth. Commun. 2005, 35, 105.
      (c) Su, L.; Lei, C.-Y.; Fan, W.-Y.; Liu, L.-X. Synth. Commun. 2011, 41, 1200.

    17. [17]

      (a) Li, J.-H.; Xie, Y.-X.; Yin, D.-L. Green Chem. 2002, 4, 505.
      (b) Larson, S.; Luidhardt, T.; Kabalka, G. W.; Pagni, R. M. Tetrahedron Lett. 1988, 29, 35.
      (c) Song, S.; Li, X.; Wei, J.; Wang, W.; Zhang, Y.; Ai, L.; Zhu, Y.; Shi, X.; Zhang, X.; Jiao, N. Nat. Catal. 2020, 3, 107.

    18. [18]

      Banothu, R.; Peraka, S.; Kodumuri, S.; Chevella, D.; Gajula, K. S.; Amrutham, V.; Yennamaneni, D. R.; Nama, N. New J. Chem. 2018, 42, 17879.  doi: 10.1039/C8NJ03929A

    19. [19]

      Stavber, S.; Stavber, G.; Iskra, J.; Zupan, M. Adv. Synth. Catal. 2008, 350, 2921.  doi: 10.1002/adsc.200800553

    20. [20]

      Guo, C.-C.; Jiang, Q.; Wang, J.-Y. Synthesis 2015, 47, 2081.  doi: 10.1055/s-0034-1379910

    21. [21]

      (a) Liu, Y.; Maruoka, K.; Huang, D.-Y.; Huang, J. J. Org. Chem. 2017, 82, 11865.
      (b) Kashyap, S.; Rao D. S.; Reddy, T. R. Org. Biomol. Chem. 2018, 16, 1508.

    22. [22]

      Madabhushi, S.; Jillella, R.; Mallu, K. K. R.; Golada, K. R.; Vangipuram, V. S. Tetrahedron Lett. 2013, 54, 3993.  doi: 10.1016/j.tetlet.2013.05.072

    23. [23]

      Yang, F.; Jin, T.; Bao, M.; Yamamoto, Y. Chem. Commun. 2011, 47, 4013.  doi: 10.1039/c0cc05442a

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    3. [3]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    4. [4]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    5. [5]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    6. [6]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    7. [7]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    8. [8]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    9. [9]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    10. [10]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    11. [11]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    12. [12]

      Hongmei Chai Yixia Ren Xiangyang Hou Long Tang Jiawei Xie . 智能手机光传感的“丙酮碘化反应”实验改进. University Chemistry, 2025, 40(6): 193-200. doi: 10.12461/PKU.DXHX202407086

    13. [13]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    14. [14]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    15. [15]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    16. [16]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    17. [17]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    18. [18]

      Jin Yan Chengxia Tong Yajie Li Yue Gu Xuejian Qu Shigang Wei Wanchun Zhu Yupeng Guo . Construction of a “Dual Support, Triple Integration” Chemical Safety Practical Education System. University Chemistry, 2024, 39(7): 69-75. doi: 10.12461/PKU.DXHX202405008

    19. [19]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    20. [20]

      Wei Gao Jinyue Yang Wenwei Zhang . Practice and Exploration of Promoting the “Double Reduction” Work with Popular Science Resources in Universities. University Chemistry, 2024, 39(9): 385-391. doi: 10.3866/PKU.DXHX202311008

Metrics
  • PDF Downloads(4)
  • Abstract views(1458)
  • HTML views(146)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return