Citation: Xu Yao, Kang Jingwu. Chiral Separation by Ultrafast and Two-Dimensional Liquid Chromatography[J]. Chinese Journal of Organic Chemistry, ;2020, 40(11): 3794-3801. doi: 10.6023/cjoc202005046 shu

Chiral Separation by Ultrafast and Two-Dimensional Liquid Chromatography

  • Corresponding author: Kang Jingwu, jingwu.kang@sioc.ac.cn
  • Received Date: 18 May 2020
    Revised Date: 29 June 2020
    Available Online: 15 July 2020

    Fund Project: the National Natural Science Foundation of China 21375140the National Natural Science Foundation of China 21175146the National Natural Science Foundation of China 21775158Project supported by the National Natural Science Foundation of China (Nos. 21775158, 21375140, 21175146)

Figures(6)

  • Although the chiral separation techniques represented by the polysaccharides-based chiral stationary phases are almost matured, the chiral separation for complex samples remains a challenge. To this end, two dimensional liquid chromatography has been developed rapidly. Recently, to achieve the chiral separation with two dimensional liquid chromatoraphy, the development of the ultrafast liquid chromatography has caused considerable attention. The development of ultrafast liquid chromatography and two-dimensional liquid chromatography also caters to the development of high-throughput organic synthesis technology. In this review the recent progress in the chiral separation by the ultrafast and two-dimensional liquid chromatography is summarized. This review focuses on the progress in the techniques of the chiral packing materials for ultrafast chromatography, the chiral separation strategy and its application in complex samples. Finally, the application perspective of ultra-fast and two-dimensional liquid phase in high-throughput organic synthesis techniques is prospected.
  • 加载中
    1. [1]

      De Camp, W. H. J. Pharm. Biomed. Anal. 1993, 11, 1167.  doi: 10.1016/0731-7085(93)80100-F

    2. [2]

      Maier, N. M.; Franco, P.; Lindner, W. J. Chromatogr. A 2001, 906, 3.  doi: 10.1016/S0021-9673(00)00532-X

    3. [3]

      Hegade, R. S.; Lynen, F. J. Chromatogr. A 2019, 1586, 116.  doi: 10.1016/j.chroma.2018.12.008

    4. [4]

      Pirok, B. W. J.; Stoll, D. R.; Schoenmakers, P. J. Anal. Chem. 2019, 91, 240.  doi: 10.1021/acs.analchem.8b04841

    5. [5]

      Lorenz, H.; Seidel-Morgenstern, A. Angew. Chem., Int. Ed. 2014, 53, 1218.  doi: 10.1002/anie.201302823

    6. [6]

      Regalado, E. L.; Kozlowski, M. C.; Curto, J. M.; Ritter, T.; Campbell, M. G.; Mazzotti, A. R.; Hamper, B. C.; Spilling, C. D.; Mannino, M. P.; Wan, L.; Yu, J. Q.; Liu, J.; Welch, C. J. Org. Biomol. Chem. 2014, 12, 2161.  doi: 10.1039/c3ob42195c

    7. [7]

      Major, E. R. LC GC Europe 2012, 25, 1.

    8. [8]

      Mazzeo, J. R.; Neue, U. D.; Kele, M.; Plumb, R. S. Anal. Chem. 2005, 77, 460 A.

    9. [9]

      Blue, L. E.; Franklin, E. G.; Godinho, J. M.; Grinias, J. P.; Grinias, K. M.; Lunn, D. B.; Moore, S. M. J. Chromatogr. A 2017, 1523, 17.  doi: 10.1016/j.chroma.2017.05.039

    10. [10]

      MacNair, J. E.; Lewis, K. C.; Jorgenson, J. W. Anal. Chem. 1997, 69, 983.  doi: 10.1021/ac961094r

    11. [11]

      Jorgenson, J. W. Annu. Rev. Anal. Chem. 2010, 3, 129.  doi: 10.1146/annurev.anchem.1.031207.113014

    12. [12]

      Perera, D.; Tucker, J. W.; Brahmbhatt, S.; Helal, C. J.; Chong, A.; Farrell, W.; Richardson, P.; Sach, N. W. Science 2018, 359, 429.  doi: 10.1126/science.aap9112

    13. [13]

      Robbins, D. W.; Hartwig, J. F. Science 2011, 333, 1423.  doi: 10.1126/science.1207922

    14. [14]

      Barhate, C. L.; Wahab, M. F.; Tognarelli, D. J.; Berger, T. A.; Armstrong, D. W. Anal. Chem. 2016, 88, 8664.  doi: 10.1021/acs.analchem.6b01898

    15. [15]

      Ismail, O. H.; Ciogli, A.; Villani, C.; De Martino, M.; Pierini, M.; Cavazzini, A.; Bell, D. S.; Gasparrini, F. J. Chromatogr. A 2016, 1427, 55.  doi: 10.1016/j.chroma.2015.11.071

    16. [16]

      Patel, D. C.; Breitbach, Z. S.; Wahab, M. F.; Barhate, C. L.; Armstrong, D. W. Anal. Chem. 2015, 87, 9137.  doi: 10.1021/acs.analchem.5b00715

    17. [17]

      Regalado, E. L.; Welch, C. J. J. Sep. Sci. 2015, 38, 2826.  doi: 10.1002/jssc.201500270

    18. [18]

      Wahab, M. F.; Wimalasinghe, R. M.; Wang, Y.; Barhate, C. L.; Patel, D. C.; Armstrong, D. W. Anal. Chem. 2016, 88, 8821.  doi: 10.1021/acs.analchem.6b02260

    19. [19]

      Welch, C. J.; Regalado, E. L. J. Sep. Sci. 2014, 37, 2552.  doi: 10.1002/jssc.201400508

    20. [20]

      Kotoni, D.; Ciogli, A.; Molinaro, C.; D'Acquarica, I.; Kocergin, J.; Szczerba, T.; Ritchie, H.; Villani, C.; Gasparrini, F. Anal. Chem. 2012, 84, 6805.  doi: 10.1021/ac301335b

    21. [21]

      Barhate, C. L.; Wahab, M. F.; Breitbach, Z. S.; Bell, D. S.; Armstrong, D. W. Anal. Chim. Acta 2015, 898, 128.  doi: 10.1016/j.aca.2015.09.048

    22. [22]

      Ismail, O. H.; Ciogli, A.; Villani, C.; De Martino, M.; Pierini, M.; Cavazzini, A.; Bell, D. S.; Gasparrini, F. J. Chromatogr. A 2016, 1427, 55.  doi: 10.1016/j.chroma.2015.11.071

    23. [23]

      Kirkland, J. J.; Langlois, T. J.; DeStefano, J. J. Am. Lab. 2007, 39, 18.

    24. [24]

      Gritti, F.; Leonardis, I.; Abia, J.; Guiochon, G. J. Chromatogr. A 2010, 1217, 3819.  doi: 10.1016/j.chroma.2010.04.026

    25. [25]

      Guiochon, G.; Gritti, F. J. Chromatogr. A 2011, 1218, 1915.  doi: 10.1016/j.chroma.2011.01.080

    26. [26]

      Hayes, R.; Ahmed, A.; Edge, T.; Zhang, H. J. Chromatogr. A 2014, 1357, 36.  doi: 10.1016/j.chroma.2014.05.010

    27. [27]

      Jandera, P.; Hájek, T.; Staňková, M. Anal. Bioanal. Chem. 2015, 407, 139.  doi: 10.1007/s00216-014-8147-3

    28. [28]

      Tanaka, N.; McCalley, D. V. Anal. Chem. 2016, 88, 279.  doi: 10.1021/acs.analchem.5b04093

    29. [29]

      Reischl, R. J.; Hartmanova, L.; Carrozzo, M.; Huszar, M.; Fruhauf, P.; Lindner, W. J. Chromatogr. A 2011, 1218, 8379.  doi: 10.1016/j.chroma.2011.09.046

    30. [30]

      Lomsadze, K.; Jibuti, G.; Farkas, T.; Chankvetadze, B. J. Chromatogr. A 2012, 1234, 50.  doi: 10.1016/j.chroma.2012.01.084

    31. [31]

      Kharaishvili, Q.; Jibuti, G.; Farkas, T.; Chankvetadze, B. J. Chromatogr. A 2016, 1467, 163.  doi: 10.1016/j.chroma.2016.08.046

    32. [32]

      Berger, T. A. J. Chromatogr. A 2017, 1510, 82.  doi: 10.1016/j.chroma.2017.06.021

    33. [33]

      Bezhitashvili, L.; Bardavelidze, A.; Mskhiladze, A.; Gumustas, M.; Ozkan, S. A.; Volonterio, A.; Farkas, T.; Chankvetadze, B. J. Chromatogr. A 2018, 1571, 132.  doi: 10.1016/j.chroma.2018.08.011

    34. [34]

      D'Orazio, G.; Kakava, R.; Volonterio, A.; Fanali, S.; Chankvetadze, B. Electrophoresis 2017, 38, 1932.  doi: 10.1002/elps.201700126

    35. [35]

      Mao, X. J.; Li, J.; Liu, D.; Qiao, T.; Ma, L.; Sun, X.; Xu, L.; Shi, Z. G. Talanta 2018, 178, 583.  doi: 10.1016/j.talanta.2017.09.093

    36. [36]

      Kucerova, G.; Kalikova, K.; Tesarova, E. Chirality 2017, 29, 239.  doi: 10.1002/chir.22701

    37. [37]

      Roy, D.; Armstrong, D. W. J. Chromatogr. A 2019, 1605.

    38. [38]

      Patel, D. C.; Breitbach, Z. S.; Wahab, M. F.; Barhate, C. L.; Armstrong, D. W. Anal. Chem. 2015, 87, 9137.  doi: 10.1021/acs.analchem.5b00715

    39. [39]

      Wahab, M. F.; Wimalasinghe, R. M.; Wang, Y.; Barhate, C. L.; Patel, D. C.; Armstrong, D. W. Anal. Chem. 2016, 88, 8821.  doi: 10.1021/acs.analchem.6b02260

    40. [40]

      Guo, H.; Wahab, M. F.; Berthod, A.; Armstrong, D. W. J. Pharm. Anal. 2018, 8, 324.  doi: 10.1016/j.jpha.2018.08.001

    41. [41]

      Franzini, R.; Ciogli, A.; Gasparrini, F.; Ismail, O. H.; Villani, C. In Chiral Analysis, Elsevier Science, Rome, Italy, 2018, pp. 607~629.

    42. [42]

      West, C. TrAC, Trends Anal. Chem. 2019, 120.

    43. [43]

      Speybrouck, D.; Lipka, E. J. Chromatogr. A 2016, 1467, 33.  doi: 10.1016/j.chroma.2016.07.050

    44. [44]

      Biba, M.; Regalado, E. L.; Wu, N.; Welch, C. J. J. Chromatogr. A 2014, 1363, 250.  doi: 10.1016/j.chroma.2014.07.010

    45. [45]

      Patel, D. C.; Breitbach, Z. S.; Yu, J.; Nguyen, K. A.; Armstrong, D. W. Anal. Chim. Acta 2017, 963, 164.  doi: 10.1016/j.aca.2017.02.005

    46. [46]

      Berger, T. A. J. Chromatogr. A 2016, 1459, 136.  doi: 10.1016/j.chroma.2016.07.012

    47. [47]

      Li, D. Y.; Wu, X.; Hao, F. L.; Yang, Y.; Chen, X. M. Chin. J. Chromatogr. 2016, 34, 80(in Chinese).

    48. [48]

      Heiland, J. J.; Geissler, D.; Piendl, S. K.; Warias, R.; Belder, D. Anal. Chem. 2019, 91, 6134.  doi: 10.1021/acs.analchem.9b00726

    49. [49]

      Zhang, W. H.; Xie, W.; Hou, J. B.; Chen, Q. K.; Li, S. M.; Zhu, Z. L.; Zou, X. Q; Xu, D. M. Chin. J. Chromatogr. 2019 37, 1356(in Chinese).

    50. [50]

      Yang, F.; Tang, G.; Liu, S.; Fan, Z.; Wang, Y.; Deng, H.; Bian, Z.; Li, Z. Chirality 2019, 31, 353.  doi: 10.1002/chir.23062

    51. [51]

      Tao, Y.; Zheng, Z.; Yu, Y.; Xu, J.; Liu, X.; Wu, X.; Dong, F.; Zheng, Y. Food Chem. 2018, 241, 32.  doi: 10.1016/j.foodchem.2017.08.038

    52. [52]

      Zhang, X.; Zhao, Y.; Cui, X.; Wang, X.; Shen, H.; Chen, Z.; Huang, C.; Meruva, N.; Zhou, L.; Wang, F.; Wu, L.; Luo, F. J. Chromatogr. A 2018, 1581-1582, 144.  doi: 10.1016/j.chroma.2018.10.051

    53. [53]

      León-González, M. E.; Rosales-Conrado, N.; Pérez-Arribas, L. V.; Guillén-Casla, V. Biomed. Chromatogr. 2014, 28, 59.  doi: 10.1002/bmc.3007

    54. [54]

      D'Atri, V.; Fekete, S.; Clarke, A.; Veuthey, J. L.; Guillarme, D. Anal. Chem. 2019, 91, 210.  doi: 10.1021/acs.analchem.8b05026

    55. [55]

      Barhate, C. L.; Joyce, L. A.; Makarov, A. A.; Zawatzky, K.; Bernardoni, F.; Schafer, W. A.; Armstrong, D. W.; Welch, C. J.; Regalado, E. L. Chem. Commun. 2017, 53, 509.  doi: 10.1039/C6CC08512A

    56. [56]

      Barhate, C. L.; Regalado, E. L.; Contrella, N. D.; Lee, J.; Jo, J.; Makarov, A. A.; Armstrong, D. W.; Welch, C. J. Anal. Chem. 2017, 89, 3545.  doi: 10.1021/acs.analchem.6b04834

    57. [57]

      Ianni, F.; Sardella, R.; Lisanti, A.; Gioiello, A.; Cenci Goga, B. T.; Lindner, W.; Natalini, B. J. Pharm. Biomed. Anal. 2015, 116, 40.  doi: 10.1016/j.jpba.2014.12.041

    58. [58]

      Rao, R. N.; Kumar, K. N.; Shinde, D. D. J. Pharm. Biomed. Anal. 2010, 52, 398.  doi: 10.1016/j.jpba.2009.09.020

    59. [59]

      Venkatramani, C. J.; Al-Sayah, M.; Li, G.; Goel, M.; Girotti, J.; Zang, L.; Wigman, L.; Yehl, P.; Chetwyn, N. Talanta 2016, 148, 548.  doi: 10.1016/j.talanta.2015.10.054

    60. [60]

      Woiwode, U.; Neubauer, S.; Lindner, W.; Buckenmaier, S.; Lämmerhofer, M. J. Chromatogr. A 2018, 1562, 69.  doi: 10.1016/j.chroma.2018.05.062

    61. [61]

      Woiwode, U.; Reischl, R. J.; Buckenmaier, S.; Lindner, W.; Lämmerhofer, M. Anal. Chem. 2018, 90, 7963.  doi: 10.1021/acs.analchem.8b00676

    62. [62]

      Iguiniz, M.; Corbel, E.; Roques, N.; Heinisch, S. J. Pharm. Biomed. Anal. 2018, 159, 237.  doi: 10.1016/j.jpba.2018.06.058

    63. [63]

      Venkatramani, C. J.; Al-Sayah, M.; Li, G.; Goel, M.; Girotti, J.; Zang, L.; Wigman, L.; Yehl, P.; Chetwyn, N. Talanta 2016, 148, 548.  doi: 10.1016/j.talanta.2015.10.054

    64. [64]

      Barhate, C. L.; Regalado, E. L.; Contrella, N. D.; Lee, J.; Jo, J.; Makarov, A. A.; Armstrong, D. W.; Welch, C. J. Anal. Chem. 2017, 89, 3545.  doi: 10.1021/acs.analchem.6b04834

    65. [65]

      Bester, K.; Vorkamp, K. Anal Bioanal Chem 2013, 405, 6519.  doi: 10.1007/s00216-013-7100-1

    66. [66]

      Woiwode, U.; Reischl, R. J.; Buckenmaier, S.; Lindner, W.; Lammerhofer, M. Anal. Chem. 2018, 90, 7963.  doi: 10.1021/acs.analchem.8b00676

    67. [67]

      Schiller, D. S.; Fung, H. B. Clin. Ther. 2007, 29, 1862.  doi: 10.1016/j.clinthera.2007.09.015

    68. [68]

      Xu, F.; Xu, Y.; Liu, G.; Zhang, M.; Qiang, S.; Kang, J. J Chromatogr. A 2020, 460845.

  • 加载中
    1. [1]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    2. [2]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    3. [3]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    4. [4]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    5. [5]

      Guilan He Yaofeng Yuan . 手性二茂铁双膦配体Xyliphos的合成及应用. University Chemistry, 2025, 40(8): 130-137. doi: 10.12461/PKU.DXHX202409122

    6. [6]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    7. [7]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    8. [8]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    9. [9]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    10. [10]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    11. [11]

      Shunü Peng Huamin Li Zhaobin Chen Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043

    12. [12]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    13. [13]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    14. [14]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    15. [15]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    16. [16]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    17. [17]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    18. [18]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    19. [19]

      Jia Zhou . Design and Practice of a Comprehensive Computational Chemistry Experiment Based on High-Throughput Computation and Machine Learning. University Chemistry, 2025, 40(9): 69-75. doi: 10.12461/PKU.DXHX202411067

    20. [20]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

Metrics
  • PDF Downloads(14)
  • Abstract views(5909)
  • HTML views(744)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return