Citation: Wang Lingyun, Xin Shuqi, Tang Hao, Cao Derong. Research Progress in Cancer Treatment by Diketopyrrolopyrrole-Based Photosensitizers and Photothermal Agents[J]. Chinese Journal of Organic Chemistry, ;2020, 40(12): 4155-4167. doi: 10.6023/cjoc202005041 shu

Research Progress in Cancer Treatment by Diketopyrrolopyrrole-Based Photosensitizers and Photothermal Agents

  • Corresponding author: Wang Lingyun, lingyun@scut.edu.cn
  • Received Date: 18 May 2020
    Revised Date: 17 June 2020
    Available Online: 8 July 2020

    Fund Project: the China Scholarship Council 201906155012the National Natural Science Foundation of China 22071065the Natural Science Foundation of Guangdong Province 2018B030311008Project supported by the National Natural Science Foundation of China (Nos. 21772045, 22071065), the Natural Science Foundation of Guangdong Province (No. 2018B030311008), the China Scholarship Council (No. 201906155012) and the Technology Program of Guangzhou City (No. 201904010414)the Technology Program of Guangzhou City 201904010414the National Natural Science Foundation of China 21772045

Figures(17)

  • Cancer has become one of the major threats to human health in modern society. Phototherapy including photodynamic therapy (PDT) and photothermal therapy (PTT), as a new type of tumor treatment, has received more and more attentions due to its high spatiotemporal precision, noninvasive nature, controllability, low toxicity and repeatable treatment without initial resistance. It is important to obtain a highly efficient and ideal photosensitizer for reactive oxygen species (ROS) generation for PDT. Photothermal agents with high photothermal conversion efficiency are also in urgent need for PTT. Diketopyrrolopyrrole (DPP) is an excellent type of photosensitizer and photothermal reagent because of its good structural planarity, strong electron affinity, simple synthesis, easy structure modification and high molar absorption coefficient. The research progress of DPP-based photosensitizers and photothermal agents in recent year, including structural modification of DPP, the structure-activity relationship, the mechanism of phototherapy and some representative examples is summarized. Finally, a perspective on the future development of phototherapy based on DPP is presented.
  • 加载中
    1. [1]

      Wilson, B.; Weersink, R. Photochem. Photobiol. 2020, 96, 219.  doi: 10.1111/php.13184

    2. [2]

      Liu, Y.; Bhattarai, P.; Dai, Z.; Chen, X. Chem. Soc. Rev. 2019, 48, 2053.  doi: 10.1039/C8CS00618K

    3. [3]

      Wang, P.; Sun, S.; Ma, H.; Sun, S.; Zhao, D.; Wang, S.; Liang, X. Mater. Sci. Eng., C 2020, 108, 11019.

    4. [4]

      Rejinold, N.; Choi, Choy, G. Coord. Chem. Rev. 2020, 411, 213252.  doi: 10.1016/j.ccr.2020.213252

    5. [5]

      Fan, W.; Huang, P.; Chen, X. Chem. Soc. Rev. 2016, 45, 6488.  doi: 10.1039/C6CS00616G

    6. [6]

      Yano, S.; Hirohara, S.; Obata, M.; Hagiya, Y.; Ogura, S. I.; Ikeda, A.; Kataoka, H.; Tanaka, M.; Joh, T. J. Photochem. Photobiol., C 2011, 12, 46.  doi: 10.1016/j.jphotochemrev.2011.06.001

    7. [7]

      Allison, R. R; Sibata, C. H. Photodiagn. Photodyn. Ther. 2010, 7, 61.  doi: 10.1016/j.pdpdt.2010.02.001

    8. [8]

      Cai, Y.; Tang, Q.; Wu, X.; Si, W.; Zhang, Q.; Huang, W.; Dong, X. ACS Appl. Mater. Inter. 2016, 8, 10737.  doi: 10.1021/acsami.6b01533

    9. [9]

      Liang, P.; Shao, J.; Tang, Q.; Si, W.; Wang, Q.; Zhang, Q.; Dong, X. RSC Adv. 2017, 7, 37369.  doi: 10.1039/C7RA06551E

    10. [10]

      Zou, J.; Yin, Z.; Wang, P.; Chen, D.; Shao, J.; Zhang, Q.; Sun, L.; Huang, W.; Dong, X. Chem. Sci. 2018, 9, 2188.  doi: 10.1039/C7SC04694D

    11. [11]

      He, H.; Zheng, X.; Liu, S.; Zheng, M.; Xie, Z.; Wang, Y.; Yu, M.; Shuai, X. Nanoscale 2018, 10, 10991.  doi: 10.1039/C8NR02643B

    12. [12]

      Schmitt, J.; Heitz, V.; Sour, A.; Bolze, F.; Ftouni, H.; Nicoud, J.; Flamigni, L.; Ventura, B. Angew. Chem., Int. Ed. 2015, 54, 169.  doi: 10.1002/anie.201407537

    13. [13]

      Schmitt, J.; Heitz, V.; Sour, A.; Bolze, F.; Kessler, P.; Flamigni, L.; Ventura, B.; Bonnet, C. S.; Tóth, É. Chem.-Eur. J 2016, 22, 2775.  doi: 10.1002/chem.201503433

    14. [14]

      Fisher, J. W.; Sarkar, S.; Buchanan, C. F.; Szot, C. S.; Whitney, J.; Hatcher, H. C.; Torti, S. V.; Rylander, C. G.; Rylander, M. N. Cancer Res. 2010, 70, 9855.  doi: 10.1158/0008-5472.CAN-10-0250

    15. [15]

      Gaca, S.; Reichert, S.; Multhoff, G.; Wacker, M.; Hehlgans, S.; Botzler, C.; Gehrmann, M.; Rodel, C.; Kreuter, J.; Rodel, F. J. Controlled Release 2013, 172, 201.  doi: 10.1016/j.jconrel.2013.08.020

    16. [16]

      Liang, P.; Tang, Q.; Cai, Y.; Liu, G.; Si, W.; Shao, J.; Huang, W.; Zhang, Q.; Dong, X. Chem. Sci. 2017, 8, 7457.  doi: 10.1039/C7SC03351F

    17. [17]

      Zong, S.; Wang, X.; Lin, W.; Liu, S.; Zhang, W. Bioconjugate Chem. 2018, 29, 2619.  doi: 10.1021/acs.bioconjchem.8b00333

    18. [18]

      Wu, F.; Chen, L.; Yue, L.; Wang, K.; Cheng, K.; Chen, J.; Luo, X.; Zhang, T. ACS Appl. Mater. Interfaces 2019, 11, 21408.  doi: 10.1021/acsami.9b06866

    19. [19]

      Cai, Y.; Si, W.; Tang, Q.; Liang, P.; Zhang, C.; Chen, P.; Zhang, Q.; Huang, W.; Dong, X. Nano Res. 2017, 10, 794.  doi: 10.1007/s12274-016-1332-2

    20. [20]

      Chen, H.; Zhang, J.; Chang, K.; Men, X.; Fang, X.; Zhou, L.; Li, D.; Gao, D.; Yin, S.; Zhang, X.; Yuan, Z.; Wu, C. Biomaterials 2017, 144, 42.  doi: 10.1016/j.biomaterials.2017.08.007

    21. [21]

      Li, S.; Deng, Q.; Li, X.; Huang, Y.; Li, X.; Liu, F.; Wang, H.; Qing, W.; Liu, Z.; Lee, C. Biomaterials 2019, 216, 119252.  doi: 10.1016/j.biomaterials.2019.119252

    22. [22]

      Guo, L.; Liu, W.; Niu, G.; Zhang, P.; Zheng, X.; Jia, Q.; Zhang, H.; Ge, J.; Wang, P. J. Mater. Chem. B 2017, 5, 2832.  doi: 10.1039/C7TB00498B

    23. [23]

      Wei, Z.; Wu, M.; Lan, S.; Li, J.; Zhang, X.; Zhang, D.; Liu, X.; Liu, J. Chem. Commun. 2018, 54, 13599.  doi: 10.1039/C8CC07583B

    24. [24]

      Lu, X.; Yuan, P.; Zhang, W.; Wu, Q.; Wang, X.; Zhao, M.; Sun, P.; Huang, W.; Fan, Q. Polym. Chem. 2018, 9, 3118.  doi: 10.1039/C8PY00215K

    25. [25]

      Zhang, W.; Lin, W.; Li, C.; Liu, S.; Hu, X.; Xie, Z. ACS Appl. Mater. Interfaces 2019, 11, 32720.  doi: 10.1021/acsami.9b10713

    26. [26]

      Liu, H.; Wang, K.; Yang, C.; Huang, S.; Wang, M. Colloids Surf., B 2017, 157, 398.  doi: 10.1016/j.colsurfb.2017.05.080

    27. [27]

      Cao, Y.; Yi, J.; Yang, X.; Liu, L.; Yu, C.; Huang, Y.; Sun, L.; Bao, Y.; Li, Y. Biomacromolecules 2017, 18, 2306.  doi: 10.1021/acs.biomac.7b00464

    28. [28]

      Cao, Y.; Wu, Y.; Wang, G.; Yi, J.; Yu, C.; Huang, Y.; Sun, L.; Bao, Y.; Li, Y. J. Mater. Chem. B 2017, 5, 5479.  doi: 10.1039/C7TB01264K

    29. [29]

      Wu, Y.; Wang, K.; Huang, S.; Yang, C.; Wang, M. ACS Appl. Mater. Interfaces 2017, 9, 13602.  doi: 10.1021/acsami.7b01016

    30. [30]

      Xu, Y.; Chen, J.; Tong, L.; Su, P.; Liu, Y.; Gu, B.; Bao, B.; Wang, L. J. Controlled Release 2019, 293, 94.  doi: 10.1016/j.jconrel.2018.11.016

    31. [31]

      Guo, W.; Guo, C.; Zheng, N.; Sun, T.; Liu, S. Adv. Mater. 2017, 29, 1604157.  doi: 10.1002/adma.201604157

    32. [32]

      Liang, P.; Wang, Y.; Wang, P.; Zou, J.; Xu, H.; Zhang, Y.; Si, W.; Dong, X. Nanoscale 2017, 9, 18890.  doi: 10.1039/C7NR07204J

    33. [33]

      Cai, Y.; Liang, P.; Tang, Q; Yang, X.; Si, W.; Huang, W.; Zhang, Q.; Dong, X. ACS Nano 2017, 11, 1054.  doi: 10.1021/acsnano.6b07927

    34. [34]

      Cai, Y.; Liang, P.; Si, W.; Zhao, B.; Shao, J.; Huang, W.; Zhang, Y.; Zhang, Q.; Dong, X. Org. Chem. Front. 2018, 5, 98.  doi: 10.1039/C7QO00755H

    35. [35]

      Wang, Q.; Xia, B.; Xu, J.; Niu, X.; Cai, J.; Shen, Q.; Wang, W.; Huang, W.; Fan, Q. Mater. Chem. Front. 2019, 3, 650.  doi: 10.1039/C9QM00036D

    36. [36]

      Yang, J.; Cai, Y.; Zhou, Y.; Zhang, C.; Liang, P.; Zhao, B.; Shao, J.; Fu, N.; Huang, W.; Dong, X. Dyes Pigm. 2017, 147, 270.  doi: 10.1016/j.dyepig.2017.08.023

    37. [37]

      Yang, X.; Yu, Q.; Yang, N.; Xue, L.; Shao, J.; Li, B.; Shao, J.; Dong, X. J. Mater. Chem. B 2019, 7, 2454.  doi: 10.1039/C8TB03185A

    38. [38]

      Huang, X.; Gu, R.; Li, J.; Yang, N.; Cheng, Z.; Si, W.; Chen, P.; Huang, W.; Dong, X. Sci. China:Chem. 2020, 63, 55.  doi: 10.1007/s11426-019-9531-4

    39. [39]

      Wang, P.; Wu, W.; Gao, R.; Zhu, H.; Wang, J.; Du, R.; Li, X.; Zhang, C.; Cao, S.; Xiang, R. ACS Appl. Mater. Interfaces 2019, 11, 13935.  doi: 10.1021/acsami.9b00022

    40. [40]

      Deng, W.; Wu, Q.; Sun, P.; Yuan, P.; Lu, X.; Fan, Q.; Huang, W. Polym. Chem. 2018, 9, 2805.  doi: 10.1039/C8PY00244D

    41. [41]

      Shi, H.; Wang, Y.; Huang, X.; Liang, P.; Tang, Y.; Zhang, Y.; Fu, N., Huang, W.; Dong, X. J. Mater. Chem. B 2018, 6, 7402.  doi: 10.1039/C8TB02349B

    42. [42]

      Zhou, S.; Yang, C.; Guo, L.; Wang, Y.; Zhang, G.; Feng, L. Chem. Commun. 2019, 55, 8615.  doi: 10.1039/C9CC03744F

    43. [43]

      Gong, H.; Cheng, L.; Xiang, J.; Xu, H.; Feng, L.; Shi, X.; Liu, Z. Funct. Mater. 2013, 23, 6059.  doi: 10.1002/adfm.201301555

    44. [44]

      Wang, H.; Agarwal, P.; Zhao, S.; Yu, J.; Lu, X.; He, X. Biomaterials 2016, 97, 62.  doi: 10.1016/j.biomaterials.2016.04.030

    45. [45]

      Cai, Y.; Liang, P.; Tang, Q.; Si, W.; Chen, P.; Zhang, Q.; Dong, X. ACS Appl. Mater. Interfaces 2017, 9, 30398.  doi: 10.1021/acsami.7b09025

    46. [46]

      Wang, Q.; Dai, Y.; Xu, J.; Cai, J.; Niu, X.; Zhang, L.; Chen, R.; Shen, Q.; Huang, W.; Fan, Q. Adv. Funct. Mater. 2019, 29, 1901480.  doi: 10.1002/adfm.201901480

    47. [47]

      Liang, P.; Huang, H.; Wang, Y.; Chen, D.; Ou, C.; Zhang, Q.; Shao, J.; Huang, W.; Dong, X. ACS Nano 2018, 12, 11446.  doi: 10.1021/acsnano.8b06478

  • 加载中
    1. [1]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    2. [2]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    3. [3]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    4. [4]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    5. [5]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    6. [6]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    7. [7]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    8. [8]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    9. [9]

      Jialiang XUJiabin CUI . Recent biological applications of corroles: From diagnosis to therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2303-2317. doi: 10.11862/CJIC.20240245

    10. [10]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    11. [11]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    12. [12]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    13. [13]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    14. [14]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    15. [15]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    16. [16]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    17. [17]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    20. [20]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

Metrics
  • PDF Downloads(135)
  • Abstract views(6259)
  • HTML views(1763)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return