Citation: Yang Wenchao, Zhang Mingming, Chen Wang, Yang Xiaohu, Feng Jianguo. Recent Progress in the Synthesis of Sulfur-Containing Heterocycles Using Sulfur Atom as Radical Acceptors[J]. Chinese Journal of Organic Chemistry, ;2020, 40(12): 4060-4070. doi: 10.6023/cjoc202005039 shu

Recent Progress in the Synthesis of Sulfur-Containing Heterocycles Using Sulfur Atom as Radical Acceptors

  • Corresponding author: Yang Wenchao, wccyang@126.com Feng Jianguo, jgfeng@yzu.edu.cn
  • Received Date: 16 May 2020
    Revised Date: 12 June 2020
    Available Online: 22 July 2020

    Fund Project: Project supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions (No. 19KJB150020), the Natural Science Foundation for Young Scholars of Jiangsu Province (Nos. BK20170489, BK20190900) and the Agricultural Science and Technology Innovation Fund (No. CX(19)3112)the Natural Science Foundation of the Jiangsu Higher Education Institutions 19KJB150020the Agricultural Science and Technology Innovation Fund CX(19)3112the Natural Science Foundation for Young Scholars of Jiangsu Province BK20190900the Natural Science Foundation for Young Scholars of Jiangsu Province BK20170489

Figures(20)

  • Sulfur-containing heterocyclic compounds such as thiazole, thiophene, thiopyrone, widely exist in numerous natural products and biologically active molecules. Developing of effective strategies for the formation of sulfur-containing heterocycles has become a popular research hotspot. Meanwhile, the free-radical cascade reaction of unsaturated bonds in the synthesis of heterocycle has always been an important branch of synthetic chemistry, and the achieved progresses in recent years have also demonstrated its huge potential. Researchers found that sulfur atom could act as radical acceptors to build a C-S bond, and established a series of free radical reactions through this strategy. Among them, the radical cascade reactions of anisole derivatives have been gradually developed into an important synthetic tool toward sulfur-containing heterocycles. The recent advances in the field of radical-initiated reactions of anisoles for the construction of sulfur-containing heterocycles, in which sulfur atoms play as radical acceptors, are summarized. In addition, the reaction design, mechanism and applicability of sulfur-containing heterocyclic compounds via radical cyclization towards the synthesis of complex molecules are also covered.
  • 加载中
    1. [1]

    2. [2]

      (a) Chauhan, P.; Mahajan, S.; Enders, D. Chem. Rev. 2014, 114, 8807.
      (b) Liu, H.; Jiang, X. Chem.-Asian J. 2013, 8, 2546.

    3. [3]

      (a) Xiao, Z.; Wang, L.; Wei, J.; Ran, C.; Liang, S.; Shang, J.; Chen, G.-Y.; Zheng, C. Chem. Commun. 2020, 56, 4164.
      (b) Vara, B. A.; Li, X.; Berritt, S.; Walters, C. R.; Petersson, E. J.; Molander, G. A. Chem. Sci. 2018, 9, 336.

    4. [4]

      Zhu, X.; Xie, X.; Li, P.; Guo, J.; Wang, L. Org. Lett. 2016, 18, 1546.  doi: 10.1021/acs.orglett.6b00304

    5. [5]

      Zan, N.; Xie, D.; Li, M.; Jiang, D.; Song, B. J. Agric. Food Chem. 2020, 68, 6280.  doi: 10.1021/acs.jafc.0c00987

    6. [6]

      Leardini, R.; Pedulli, G. F.; Tundo, A.; Zanardi, G. J. Chem. Soc., Chem. Commun. 1985, 1390.

    7. [7]

      (a) McDonald, F. E.; Burova, S. A.; Huffman, L. G. Jr. Synthesis 2000, 970.
      (b) Staples, M. K.; Grange, R. L.; Angus, J. A.; Ziogas, J.; Tan, N. P. H.; Taylor, M. K.; Schiesser, C. H. Org. Biomol. Chem. 2011, 9, 473.

    8. [8]

    9. [9]

      Luo, K.; Yang, W.-C.; Wu, L. Asian J. Org. Chem. 2017, 6, 350.  doi: 10.1002/ajoc.201600512

    10. [10]

    11. [11]

      Hari, D. P.; Hering, T.; König, B. Org. Lett. 2012, 14, 5334.  doi: 10.1021/ol302517n

    12. [12]

      Zang, H.; Sun, J.-G.; Dong, X.; Li, P.; Zhang, B. Adv. Synth. Catal. 2016, 358, 1746.  doi: 10.1002/adsc.201501102

    13. [13]

      (a) Zhu, J.; Yang, W.-C.; Wang, X.-D.; Wu, L. Adv. Synth. Catal. 2018, 360, 386.
      (b) Ye, S.; Qiu, G.; Wu, J. Chem. Commun. 2019, 55, 1013.
      (c) Yang, W.-C.; Dai, P.; Luo, K.; Wu, L. Adv. Synth. Catal. 2016, 358, 3184.
      (d) Qiu, G.; Zhou, K.; Wu, J. Chem. Commun. 2018, 54, 12561.

    14. [14]

      Xu, J.; Yu, X.; Yan, J.; Song, Q. Org. Lett. 2017, 19, 6292.  doi: 10.1021/acs.orglett.7b02971

    15. [15]

      Yan, J.; Xu, J.; Zhou, Y.; Chen, J.; Song, Q. Org. Chem. Front. 2018, 5, 1483.  doi: 10.1039/C8QO00147B

    16. [16]

      Liu, W.; Hu, Y.-Q.; Hong, X.-Y.; Li, G.-X.; Huang, X.-B.; Gao, W.-X.; Liu, M.-C.; Xia, Y.-Z.; Zhou, Y.-B.; Wu, H.-Y. Chem. Commun. 2018, 54, 14148.  doi: 10.1039/C8CC07735E

    17. [17]

      An, C.; Li, C.-Y.; Huang, X.-B.; Gao, W.-X.; Zhou, Y.-B.; Liu, M.-C.; Wu, H.-Y. Org. Lett. 2019, 21, 6710.  doi: 10.1021/acs.orglett.9b02315

    18. [18]

      Ye, S.; Yang, M.; Wu, J. Chem. Commun. 2020, 56, 4145.  doi: 10.1039/D0CC01775B

    19. [19]

      Gong, X.; Wang, M.; Ye, S.; Wu, J. Org. Lett. 2019, 21, 1156.  doi: 10.1021/acs.orglett.9b00100

    20. [20]

      Gao, Y.; Tang, G.; Zhao, Y. Chin. J. Org. Chem. 2018, 38, 62(in Chinese).
       

    21. [21]

      Cai, T.; Liu, J.; Zhang, H.; Wang, X.; Feng, J.; Shen, R.; Gao, Y. Org. Lett. 2019, 21, 4605.  doi: 10.1021/acs.orglett.9b01510

    22. [22]

      (a) Song, B.; Xu, B. Chem. Soc. Rev. 2017, 46, 1103.
      (b) Zhang, B.; Studer, A. Chem. Soc. Rev. 2015, 44, 3505.
      (c) Lei, J.; Huang, J.; Zhu, Q. Org. Biomol. Chem. 2016, 14, 2593.
      (d) Li, D.; Mao, T.; Huang, J.; Zhu, Q. Org. Lett. 2017, 19, 3223.
      (e) Li, Y.; Miao, T.; Li, P.; Wang, L. Org. Lett. 2018, 20, 1735.

    23. [23]

      Yang, W.-C.; Wei, K.; Sun, X.; Zhu, J.; Wu, L. Org. Lett. 2018, 20, 3144.  doi: 10.1021/acs.orglett.8b01278

    24. [24]

      Ma, X.; Mai, S.; Zhou, Y.; Cheng, G.-J.; Song, Q. Chem. Commun. 2018, 54, 8960.  doi: 10.1039/C8CC04298E

    25. [25]

      Yuan, Y.; Dong, W.; Gao, X.; Xie, X.; Zhang, Z. Org. Lett. 2019, 21, 469.  doi: 10.1021/acs.orglett.8b03710

    26. [26]

      Liu, Y.; Chen, X.-L.; Sun, K.; Li, X.-Y.; Zeng, F.-L.; Liu, X.-C.; Qu, L.-B.; Zhao, Y.-F.; Yu, B. Org. Lett. 2019, 21, 4019.  doi: 10.1021/acs.orglett.9b01175

    27. [27]

      Yang, W.; Li, B.; Zhang, M.; Wang, S.; Ji, Y.; Dong, S.; Feng, J.; Yuan, S. Chin. Chem. Lett. 2020, 31, 1313.  doi: 10.1016/j.cclet.2019.10.022

    28. [28]

      Luo, K.; Yang, W.-C.; Wei, K.; Liu, Y.; Wang, J.-K.; Wu, L. Org. Lett. 2019, 21, 7851.  doi: 10.1021/acs.orglett.9b02837

    29. [29]

      Yu, J.-X.; Niu, S.; Hu, M.; Xiang, J.-N.; Li, J.-H. Chem. Commun. 2019, 55, 6727.  doi: 10.1039/C9CC02242B

    30. [30]

      Qin, J.-H.; Yu, J.-X.; Li, J.-H.; An, D.-L. Adv. Synth. Catal. 2019, 361, 3974.  doi: 10.1002/adsc.201900621

    31. [31]

      Huang, M.-H.; Hao, W.-J.; Li, G.; Tu, S.-J. Chem. Commun. 2018, 54, 10791.  doi: 10.1039/C8CC04618B

    32. [32]

      Gao, Y.; Zhang, P.; Li, G.; Zhao, Y. J. Org. Chem. 2018, 83, 13726.  doi: 10.1021/acs.joc.8b02001

    33. [33]

    34. [34]

      Wang, L.; Wang, H.; Meng, W.; Xu, X.; Huang, Y. Chin. Chem. Lett. 2020, DOI:10.1016/j.cclet.2020.02.040.  doi: 10.1016/j.cclet.2020.02.040

    35. [35]

      (a) Liu, X.-C.; Chen, X.-L.; Liu, Y.; Sun, K.; Peng, Y.-Y.; Qu, L.-B.; Yu, B. ChemSusChem 2020, 13, 298.
      (b) Jiang, Y.-Q.; Li, J.; Feng, Z.-W.; Xu, G.-Q.; Shi, X.; Ding, Q.-J.; Li, W.; Ma, C.-H.; Yu, B. Adv. Synth. Catal. 2020, 362, 2609.

  • 加载中
    1. [1]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    2. [2]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    3. [3]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    4. [4]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    5. [5]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    6. [6]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    7. [7]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    8. [8]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    9. [9]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    10. [10]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    11. [11]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    12. [12]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    13. [13]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    14. [14]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    18. [18]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    19. [19]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    20. [20]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

Metrics
  • PDF Downloads(265)
  • Abstract views(5619)
  • HTML views(1834)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return