Citation: Yang Wenchao, Zhang Mingming, Chen Wang, Yang Xiaohu, Feng Jianguo. Recent Progress in the Synthesis of Sulfur-Containing Heterocycles Using Sulfur Atom as Radical Acceptors[J]. Chinese Journal of Organic Chemistry, ;2020, 40(12): 4060-4070. doi: 10.6023/cjoc202005039 shu

Recent Progress in the Synthesis of Sulfur-Containing Heterocycles Using Sulfur Atom as Radical Acceptors

  • Corresponding author: Yang Wenchao, wccyang@126.com Feng Jianguo, jgfeng@yzu.edu.cn
  • Received Date: 16 May 2020
    Revised Date: 12 June 2020
    Available Online: 22 July 2020

    Fund Project: Project supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions (No. 19KJB150020), the Natural Science Foundation for Young Scholars of Jiangsu Province (Nos. BK20170489, BK20190900) and the Agricultural Science and Technology Innovation Fund (No. CX(19)3112)the Natural Science Foundation of the Jiangsu Higher Education Institutions 19KJB150020the Agricultural Science and Technology Innovation Fund CX(19)3112the Natural Science Foundation for Young Scholars of Jiangsu Province BK20190900the Natural Science Foundation for Young Scholars of Jiangsu Province BK20170489

Figures(20)

  • Sulfur-containing heterocyclic compounds such as thiazole, thiophene, thiopyrone, widely exist in numerous natural products and biologically active molecules. Developing of effective strategies for the formation of sulfur-containing heterocycles has become a popular research hotspot. Meanwhile, the free-radical cascade reaction of unsaturated bonds in the synthesis of heterocycle has always been an important branch of synthetic chemistry, and the achieved progresses in recent years have also demonstrated its huge potential. Researchers found that sulfur atom could act as radical acceptors to build a C-S bond, and established a series of free radical reactions through this strategy. Among them, the radical cascade reactions of anisole derivatives have been gradually developed into an important synthetic tool toward sulfur-containing heterocycles. The recent advances in the field of radical-initiated reactions of anisoles for the construction of sulfur-containing heterocycles, in which sulfur atoms play as radical acceptors, are summarized. In addition, the reaction design, mechanism and applicability of sulfur-containing heterocyclic compounds via radical cyclization towards the synthesis of complex molecules are also covered.
  • 加载中
    1. [1]

    2. [2]

      (a) Chauhan, P.; Mahajan, S.; Enders, D. Chem. Rev. 2014, 114, 8807.
      (b) Liu, H.; Jiang, X. Chem.-Asian J. 2013, 8, 2546.

    3. [3]

      (a) Xiao, Z.; Wang, L.; Wei, J.; Ran, C.; Liang, S.; Shang, J.; Chen, G.-Y.; Zheng, C. Chem. Commun. 2020, 56, 4164.
      (b) Vara, B. A.; Li, X.; Berritt, S.; Walters, C. R.; Petersson, E. J.; Molander, G. A. Chem. Sci. 2018, 9, 336.

    4. [4]

      Zhu, X.; Xie, X.; Li, P.; Guo, J.; Wang, L. Org. Lett. 2016, 18, 1546.  doi: 10.1021/acs.orglett.6b00304

    5. [5]

      Zan, N.; Xie, D.; Li, M.; Jiang, D.; Song, B. J. Agric. Food Chem. 2020, 68, 6280.  doi: 10.1021/acs.jafc.0c00987

    6. [6]

      Leardini, R.; Pedulli, G. F.; Tundo, A.; Zanardi, G. J. Chem. Soc., Chem. Commun. 1985, 1390.

    7. [7]

      (a) McDonald, F. E.; Burova, S. A.; Huffman, L. G. Jr. Synthesis 2000, 970.
      (b) Staples, M. K.; Grange, R. L.; Angus, J. A.; Ziogas, J.; Tan, N. P. H.; Taylor, M. K.; Schiesser, C. H. Org. Biomol. Chem. 2011, 9, 473.

    8. [8]

    9. [9]

      Luo, K.; Yang, W.-C.; Wu, L. Asian J. Org. Chem. 2017, 6, 350.  doi: 10.1002/ajoc.201600512

    10. [10]

    11. [11]

      Hari, D. P.; Hering, T.; König, B. Org. Lett. 2012, 14, 5334.  doi: 10.1021/ol302517n

    12. [12]

      Zang, H.; Sun, J.-G.; Dong, X.; Li, P.; Zhang, B. Adv. Synth. Catal. 2016, 358, 1746.  doi: 10.1002/adsc.201501102

    13. [13]

      (a) Zhu, J.; Yang, W.-C.; Wang, X.-D.; Wu, L. Adv. Synth. Catal. 2018, 360, 386.
      (b) Ye, S.; Qiu, G.; Wu, J. Chem. Commun. 2019, 55, 1013.
      (c) Yang, W.-C.; Dai, P.; Luo, K.; Wu, L. Adv. Synth. Catal. 2016, 358, 3184.
      (d) Qiu, G.; Zhou, K.; Wu, J. Chem. Commun. 2018, 54, 12561.

    14. [14]

      Xu, J.; Yu, X.; Yan, J.; Song, Q. Org. Lett. 2017, 19, 6292.  doi: 10.1021/acs.orglett.7b02971

    15. [15]

      Yan, J.; Xu, J.; Zhou, Y.; Chen, J.; Song, Q. Org. Chem. Front. 2018, 5, 1483.  doi: 10.1039/C8QO00147B

    16. [16]

      Liu, W.; Hu, Y.-Q.; Hong, X.-Y.; Li, G.-X.; Huang, X.-B.; Gao, W.-X.; Liu, M.-C.; Xia, Y.-Z.; Zhou, Y.-B.; Wu, H.-Y. Chem. Commun. 2018, 54, 14148.  doi: 10.1039/C8CC07735E

    17. [17]

      An, C.; Li, C.-Y.; Huang, X.-B.; Gao, W.-X.; Zhou, Y.-B.; Liu, M.-C.; Wu, H.-Y. Org. Lett. 2019, 21, 6710.  doi: 10.1021/acs.orglett.9b02315

    18. [18]

      Ye, S.; Yang, M.; Wu, J. Chem. Commun. 2020, 56, 4145.  doi: 10.1039/D0CC01775B

    19. [19]

      Gong, X.; Wang, M.; Ye, S.; Wu, J. Org. Lett. 2019, 21, 1156.  doi: 10.1021/acs.orglett.9b00100

    20. [20]

      Gao, Y.; Tang, G.; Zhao, Y. Chin. J. Org. Chem. 2018, 38, 62(in Chinese).
       

    21. [21]

      Cai, T.; Liu, J.; Zhang, H.; Wang, X.; Feng, J.; Shen, R.; Gao, Y. Org. Lett. 2019, 21, 4605.  doi: 10.1021/acs.orglett.9b01510

    22. [22]

      (a) Song, B.; Xu, B. Chem. Soc. Rev. 2017, 46, 1103.
      (b) Zhang, B.; Studer, A. Chem. Soc. Rev. 2015, 44, 3505.
      (c) Lei, J.; Huang, J.; Zhu, Q. Org. Biomol. Chem. 2016, 14, 2593.
      (d) Li, D.; Mao, T.; Huang, J.; Zhu, Q. Org. Lett. 2017, 19, 3223.
      (e) Li, Y.; Miao, T.; Li, P.; Wang, L. Org. Lett. 2018, 20, 1735.

    23. [23]

      Yang, W.-C.; Wei, K.; Sun, X.; Zhu, J.; Wu, L. Org. Lett. 2018, 20, 3144.  doi: 10.1021/acs.orglett.8b01278

    24. [24]

      Ma, X.; Mai, S.; Zhou, Y.; Cheng, G.-J.; Song, Q. Chem. Commun. 2018, 54, 8960.  doi: 10.1039/C8CC04298E

    25. [25]

      Yuan, Y.; Dong, W.; Gao, X.; Xie, X.; Zhang, Z. Org. Lett. 2019, 21, 469.  doi: 10.1021/acs.orglett.8b03710

    26. [26]

      Liu, Y.; Chen, X.-L.; Sun, K.; Li, X.-Y.; Zeng, F.-L.; Liu, X.-C.; Qu, L.-B.; Zhao, Y.-F.; Yu, B. Org. Lett. 2019, 21, 4019.  doi: 10.1021/acs.orglett.9b01175

    27. [27]

      Yang, W.; Li, B.; Zhang, M.; Wang, S.; Ji, Y.; Dong, S.; Feng, J.; Yuan, S. Chin. Chem. Lett. 2020, 31, 1313.  doi: 10.1016/j.cclet.2019.10.022

    28. [28]

      Luo, K.; Yang, W.-C.; Wei, K.; Liu, Y.; Wang, J.-K.; Wu, L. Org. Lett. 2019, 21, 7851.  doi: 10.1021/acs.orglett.9b02837

    29. [29]

      Yu, J.-X.; Niu, S.; Hu, M.; Xiang, J.-N.; Li, J.-H. Chem. Commun. 2019, 55, 6727.  doi: 10.1039/C9CC02242B

    30. [30]

      Qin, J.-H.; Yu, J.-X.; Li, J.-H.; An, D.-L. Adv. Synth. Catal. 2019, 361, 3974.  doi: 10.1002/adsc.201900621

    31. [31]

      Huang, M.-H.; Hao, W.-J.; Li, G.; Tu, S.-J. Chem. Commun. 2018, 54, 10791.  doi: 10.1039/C8CC04618B

    32. [32]

      Gao, Y.; Zhang, P.; Li, G.; Zhao, Y. J. Org. Chem. 2018, 83, 13726.  doi: 10.1021/acs.joc.8b02001

    33. [33]

    34. [34]

      Wang, L.; Wang, H.; Meng, W.; Xu, X.; Huang, Y. Chin. Chem. Lett. 2020, DOI:10.1016/j.cclet.2020.02.040.  doi: 10.1016/j.cclet.2020.02.040

    35. [35]

      (a) Liu, X.-C.; Chen, X.-L.; Liu, Y.; Sun, K.; Peng, Y.-Y.; Qu, L.-B.; Yu, B. ChemSusChem 2020, 13, 298.
      (b) Jiang, Y.-Q.; Li, J.; Feng, Z.-W.; Xu, G.-Q.; Shi, X.; Ding, Q.-J.; Li, W.; Ma, C.-H.; Yu, B. Adv. Synth. Catal. 2020, 362, 2609.

  • 加载中
    1. [1]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    2. [2]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    3. [3]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    4. [4]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    5. [5]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    6. [6]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    7. [7]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    8. [8]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    9. [9]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    10. [10]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    11. [11]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    12. [12]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    13. [13]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    14. [14]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    15. [15]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    16. [16]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    17. [17]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    18. [18]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    19. [19]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    20. [20]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

Metrics
  • PDF Downloads(303)
  • Abstract views(6647)
  • HTML views(2197)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return