Citation: Tan Dan, Wu Sai, Wei Huan, Hu Yuanyuan, Chen Huajie. Design, Synthesis, and Properties of Conjuated Molecules with Isatin-Fused Acenaphthenequinone Imide Moieties[J]. Chinese Journal of Organic Chemistry, ;2020, 40(9): 2919-2928. doi: 10.6023/cjoc202005035 shu

Design, Synthesis, and Properties of Conjuated Molecules with Isatin-Fused Acenaphthenequinone Imide Moieties

  • Corresponding author: Chen Huajie, chenhjoe@163.com; chenhjoe@xtu.edu.cn
  • Received Date: 14 May 2020
    Revised Date: 12 June 2020
    Available Online: 24 June 2020

    Fund Project: the Science and Technology Planning Project of Hunan Province 2017RS3048Project supported by the National Natural Science Foundation of China (No. 21875202), the Hunan Provincial Natural Science Foundation of China (No. 2018JJ1024), and the Science and Technology Planning Project of Hunan Province (No. 2017RS3048)the National Natural Science Foundation of China 21875202the Hunan Provincial Natural Science Foundation of China 2018JJ1024

Figures(7)

  • Two highly electron-deficient, novel isoindigo (IID) derivative acceptor units, including isatin-fused acenaphthenequinone imide (A1) and nitrogen-doped isatin-fused acenaphthenequinone imide (A2), were designed and synthesized via Knoevenagel consendation reaction. In comparison with the well-known IID unit, both A1 and A2 acceptor units exhibit reduced LUMO energy levels (ca. -4.0 eV) and extended π-conjugation backbone owing to the incorporation of strongly electron-withdrawing acenaphthenequinone imide. The properties observed here for both A1 and A2 are thus indicative of promising potential in the development of n-type organic semiconductors. On the basis of both A1 and A2 acceptor units, two A-A type organic π-conjugated molecules (BA1 and BA2) were further designed and synthesized by self-coupling of two identical A1 or A2 acceptor units. The effect of pyridal nitrogen on the backbone structure, optical absorption, energy level, and carrier mobility of the as-prepared π-conjugated molecules is studied systematically. The comparative investigation reveals that self-coupling of dual acceptor units into BA1 and BA2 not only endows them with extended conjugation backbone and enhanced molecular symmetry, but also improves their light-capturing abilities in the whole ultraviolet-visible region as relative to their parent acceptor units (A1 and A2). Moreover, the pyridal N-containing BA1 and BA2 possess enhanced backbone coplanarity and electron affinity as compared to their parent units (A1 and A2), thereby leading to reduced HOMO and LUMO energy levels. Finally, n-type thin-film transistors are further fabricated by adopting both BA1 and BA2 as the active layers, affording the electron motilities of 1.64×10-3 and 2.52×10-3 cm2·V-1·s-1, respectively.
  • 加载中
    1. [1]

      Bharitkar, Y. P.; Datta, S.; Sett, S.; Marathee, N.; Khan, P.; Mondal, N. B. Chem. Biol. Interact. 2017, 7, 19.

    2. [2]

      Mei, J.; Graham, K. R.; Stalder, R.; Reynolds, J. R. Org. Lett. 2010, 12, 660.  doi: 10.1021/ol902512x

    3. [3]

      Papageorgiou, C.; Borer, X. Helv. Chim. Acta 1988, 71, 1079.  doi: 10.1002/hlca.19880710521

    4. [4]

      Ding, L.; Wang, Z. Y.; Wang, J. Y.; Pei, J. Chin. J. Chem. 2020, 38, 13.  doi: 10.1002/cjoc.201900347

    5. [5]

      Lu, Y.; Ding, Y. F.; Wang, J. Y.; Pei, J. Chin. J. Org. Chem. 2016, 36, 2272(in Chinese).
       

    6. [6]

    7. [7]

      Estrada, L. A.; Liu, D. Y.; Salazar, D. H.; Dyer, A. L.; Reynolds, J. R. Macromolecules 2012, 45, 8211.  doi: 10.1021/ma3016129

    8. [8]

      Bogdanov, A.; Mironov, V.; Musin, L.; Musin, R. Synthesis 2010, 3268.

    9. [9]

      El-Kateb, A.; Hennawy, I.; Shabana, R.; Osman, F. Phosphorus. Sulfur Relat. Elem. 1984, 20, 329.  doi: 10.1080/03086648408077642

    10. [10]

      Zhang, G. B.; Fu, Y. Y.; Xie, Z. Y.; Zhang, Q. Macromolecules 2011, 44, 1414.  doi: 10.1021/ma102357b

    11. [11]

      Cao, Y. Y.; Dou, J. H.; Zhao, N. J.; Zhang, S. M.; Zheng, Y. Q.; Zhang, J. P.; Wang, J. Y.; Pei, J.; Wang, Y. P. Chem. Mater. 2017, 29, 718.  doi: 10.1021/acs.chemmater.6b04405

    12. [12]

      Ashraf, R. S.; Kronemeijer, A. J.; James, D. I.; Sirringhaus, H.; McCulloch, I. Chem. Commun. 2012, 48, 3939.  doi: 10.1039/c2cc30169e

    13. [13]

      Li, C. C.; Un, H. I.; Pei, J. W.; Cai, M.; Wang, X.; Wang, J. Y.; Lan, Z. G.; Pei, J.; Wan, X. B. Chem. Eur. J. 2018, 24, 9807.  doi: 10.1002/chem.201801432

    14. [14]

      Huang, J. Y.; Mao, Z. P.; Chen, Z. H.; Gao, D.; Wei, C. Y.; Zhang, W. F.; Yu, G. Chem. Mater. 2016, 28, 2209.  doi: 10.1021/acs.chemmater.6b00154

    15. [15]

      Gao, Y.; Deng, Y. F.; Tian, H. K.; Zhang, J. D.; Yan, D. H.; Geng, Y. H.; Wang, F. S. Adv. Mater. 2017, 29, 1606217.  doi: 10.1002/adma.201606217

    16. [16]

      Yang, J.; Zhao, Z. Y.; Geng, H.; Cheng, C. L.; Chen, J. Y.; Sun, Y. L.; Shi, L. X.; Yi, Y. P.; Shuai, Z. G.; Guo, Y. L.; Wang, S.; Liu, Y. Q. Adv. Mater. 2017, 29, 1702115.  doi: 10.1002/adma.201702115

    17. [17]

      Lei, T.; Dou, J. H.; Ma, Z. J.; Liu, C. J.; Wang, J. Y.; Pei, J. Chem. Sci. 2013, 4, 2447.  doi: 10.1039/c3sc50245g

    18. [18]

      Hasegawa, T.; Ashizawa, M.; Matsumoto, H. RSC Adv. 2015, 5, 61035.  doi: 10.1039/C5RA07660A

    19. [19]

      Xu, S. L.; Ai, N.; Zhao, N.; Lan, Z. G.; Wang, X.; Pei, J.; Wan, X. B. RSC Adv. 2015, 5, 8340.  doi: 10.1039/C4RA14072A

    20. [20]

      Wan, Y.; Ashraf, R. S.; Nielsen, C. B.; Collado-Fregoso, E.; Niazi, M. R.; Yousaf, S. A.; Kirkus, M.; Chen, H. Y.; Amassian, A.; Durrant, J. R.; McCullon, I. Adv. Mater. 2015, 27, 4702.  doi: 10.1002/adma.201501841

    21. [21]

      Jiang, Y.; Zheng, X. H.; Deng, Y. F.; Tian, H. K.; Ding, J. Q.; Xie, Z. G.; Geng, Y. H.; Wang, F. S. Angew. Chem., Int. Ed. 2018, 57, 10283.  doi: 10.1002/anie.201800512

    22. [22]

      Lei, T.; Dou, J. H.; Cao, X. Y.; Wang, J. Y.; Pei, J. J. Am. Chem. Soc. 2013, 135, 12168.  doi: 10.1021/ja403624a

    23. [23]

      Ma, S. X.; Zhang, G. B.; Wang, F. F.; Dai, Y. R.; Lu, H. B.; Qiu, L. Z.; Ding, Y. S.; Cho, K. Macromolecules 2018, 51, 5704.  doi: 10.1021/acs.macromol.8b00839

    24. [24]

      He, Y.; Quinn, J.; Deng, Y.; Li, Y. Org. Electron. 2016, 35, 41.  doi: 10.1016/j.orgel.2016.05.003

    25. [25]

      Jiang, Y.; Gao, Y.; Tian, H. K.; Ding, J. Q.; Yan, D. H; Geng, Y. H.; Wang, F. S. Macromolecules 2016, 49, 2135.  doi: 10.1021/acs.macromol.6b00004

    26. [26]

      Mei, J. G.; Kim, D. H.; Ayzner, A. L.; Toney, M. F.; Bao, Z. N. J. Am. Chem. Soc. 2011, 133, 20130.  doi: 10.1021/ja209328m

    27. [27]

      Lei, T.; Dou, J. H.; Pei, J. Adv. Mater. 2012, 24, 6457.  doi: 10.1002/adma.201202689

    28. [28]

      Mei, J. G.; Wu, H. C.; Diao, Y.; Appleton, A.; Wang, H.; Zhou, Y.; Lee, W. Y.; Kurosawa, T.; Chen, W. C.; Bao, Z. N. Adv. Funct. Mater. 2015, 25, 3455.  doi: 10.1002/adfm.201500684

    29. [29]

      Lei, T.; Wang, J. Y.; Pei, J. Acc. Chem. Res. 2014, 47, 1117.  doi: 10.1021/ar400254j

    30. [30]

      Lan, L. Y.; Chen, Z. M.; Ying, L.; Huang, F.; Cao, Y. Org. Electron. 2016, 30, 176.  doi: 10.1016/j.orgel.2015.12.022

    31. [31]

      Li, X. L.; Guo, J.; Yang, L. F.; Chao, M. H.; Zheng, L. P; Ma, Z. Y.; Hu, Y. Y.; Zhao, Y.; Chen, H. J.; Liu, Y. Q. Front. Chem. 2019, 7, 362.  doi: 10.3389/fchem.2019.00362

    32. [32]

      Li, H. Y.; Kim, F. S.; Ren, G. Q.; Hollenbeck, E. C.; Subramaniyan, S.; Jenekhe, S. A. Angew. Chem., Int. Ed. 2013, 52, 5513.  doi: 10.1002/anie.201210085

    33. [33]

      Li, H. Y.; Kim, S.; Ren, G. Q.; Jenekhe, S. A. J. Am. Chem. Soc. 2013, 135, 14920.  doi: 10.1021/ja407471b

    34. [34]

      Li, H. Y.; Earmme, T.; Ren, G. Q.; Saeki, A.; Yoshikawa, S.; Murari, N. M.; Subramaniyan, S.; Crane, M. J.; Seki, S.; Jenekhe, S. A. J. Am. Chem. Soc. 2014, 136, 14589.  doi: 10.1021/ja508472j

    35. [35]

      Hwang, Y. J.; Li, H. Y.; Courtright, B. A. E.; Subramaniyan, S.; Jenekhe, S. A. Adv. Mater. 2016, 28, 124.  doi: 10.1002/adma.201503801

    36. [36]

      Kolhe, N. B.; West, S. M.; Tran, D. K.; Ding, X. M.; Kuzuhara, D.; Yoshimot, N.; Koganezawa, T.; Jenekhe, S. A. Chem. Mater. 2020, 32, 195.  doi: 10.1021/acs.chemmater.9b03329

    37. [37]

      Qian, X.; Zhu, Y. Z.; Song, J.; Gao, X. P.; Zheng, J. Y. Org. Lett. 2013, 15, 6034.  doi: 10.1021/ol402931u

    38. [38]

      Zhao, D.; Hu, J. Y.; Liu, Z. J.; Xiao, B.; Wang, X. Z.; Zhou, E. J.; Zhang, Q. Dyes Pigm. 2018, 151, 102.  doi: 10.1016/j.dyepig.2017.12.054

    39. [39]

      Jiro, T.; Tong, Z. W.; Yasuji, I. ARKIVOC 2001, 67.

    40. [40]

      Echegaray, P. D.; Mancheño, M. J.; Arrechea-Marcos, I.; Juárez, R.; López-Espejo, G.; Navarrete, J. T. L.; Ramos, M. M.; Seoane, C.; Ortiz, R. P.; Segura, J. L. J. Org. Chem. 2016, 81, 11256.  doi: 10.1021/acs.joc.6b02214

    41. [41]

      Ding, L.; Yang, C. Y.; Su, Z. M.; Pei, J. Sci. China Chem. 2015, 58, 364.  doi: 10.1007/s11426-014-5282-9

    42. [42]

      Chen, H. J.; Cai, G. S.; Guo, A. K.; Zhao, Z. Y.; Kuang, J. H.; Zheng, L. P.; Zhao, L. L.; Chen, J. Y.; Guo, Y. L.; Liu, Y. Q. Macromolecules 2019, 52, 6149.  doi: 10.1021/acs.macromol.9b00834

    43. [43]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H. Vreven, T.; Montgomery, J. A.; Jr., Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A.02, Gaussian, Inc, Wallingford CT, 2009.

    44. [44]

      Cao, Q. F.; Xiong, W. T.; Chen, H. J.; Cai, G. S.; Wang, G.; Zheng, L. P.; Sun, Y. M. J. Mater. Chem. A 2017, 5, 7451.  doi: 10.1039/C7TA01143A

  • 加载中
    1. [1]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    2. [2]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    3. [3]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    4. [4]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    5. [5]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    6. [6]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    7. [7]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    8. [8]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    9. [9]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    10. [10]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    11. [11]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    12. [12]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    13. [13]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    14. [14]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    15. [15]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    16. [16]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    17. [17]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    18. [18]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    19. [19]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    20. [20]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

Metrics
  • PDF Downloads(11)
  • Abstract views(1438)
  • HTML views(281)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return