Citation: Lei Kang, Li Pan, Zhou Xiaoyun, Wang Shiben, Wang Xuekun, Ji Lusha, Liu Renmin, Xu Xiaohua. Design, Synthesis and Herbicidal Activity of 5-Acylbarbituric Acid Derivatives and Study of Molecular Mode of Action[J]. Chinese Journal of Organic Chemistry, ;2020, 40(9): 2788-2797. doi: 10.6023/cjoc202005031 shu

Design, Synthesis and Herbicidal Activity of 5-Acylbarbituric Acid Derivatives and Study of Molecular Mode of Action

  • Corresponding author: Lei Kang, leikang@lcu.edu.cn
  • Received Date: 13 May 2020
    Revised Date: 15 June 2020
    Available Online: 8 July 2020

    Fund Project: the Natural Science Foundation of Shandong Province ZR2017BH037the China Postdoctoral Science Foundation 2020M671984the National Natural Science Foundation of China 81803360the National Natural Science Foundation of China 31701827the Natural Science Foundation of Shandong Province ZR2019PC041Project supported by the National Natural Science Foundation of China (Nos. 31701827, 81803360), the China Postdoctoral Science Foundation (No. 2020M671984), the Doctoral Research Startup Foundation of Liaocheng University (No. 318051647), the Innovation and Entrepreneurship Training Program for College Students of Liaocheng University (No. CXCY2020Y179) and the Natural Science Foundation of Shandong Province (Nos. ZR2019PC041, ZR2017BH037)the Doctoral Research Startup Foundation of Liaocheng University 318051647the Innovation and Entrepreneurship Training Program for College Students of Liaocheng University CXCY2020Y179

Figures(7)

  • In an effort to develop novel β-triketone herbicides containing a barbituric acid moiety, a series of 5-acylbarbituric acid derivatives were designed, synthesized, and tested for herbicidal activity. The bioassay results showed that some of the target compounds, such as 5-(2-(2-chloro-4-fluorophenoxy)-1-hydroxyethylidene)-1, 3-dimethylpyrimidine-2, 4, 6(1H, 3H, 5H)-trione (BBA-22) and 5-(2-(2-bromo-4-fluorophenoxy)-1-hydroxyethylidene)-1, 3-dimethylpyrimidine-2, 4, 6(1H, 3H, 5H)-trione (BBA-27), exhibited excellent herbicidal activity against all tested weeds at a dosage of 1500 g·ha-1. In particular, compound BBA-22 displayed good pre-emergent herbicidal activity against Brassica campestris, Amaranthus retroflexus and Digitaria sanguinalis even at a dosage of 187.5 g·ha-1, surpassing that of a commercial herbicide 2, 4-dichlorophenoxyacetic acid (2, 4-D). Investigation of the molecular mode of action of compound BBA-22 upon treatment of Arabidopsis thaliana as a model plant revealed that BBA-22 was degraded to the corresponding phenoxyacetic acid, which explains why the herbicidal mechanism is similar to that of auxin-type herbicides. The present study demonstrates that compound BBA-22 is a proherbicide of the corresponding phenoxyacetic acid auxin herbicide and a potential lead compound for further development of novel auxin herbicides.
  • 加载中
    1. [1]

      Dumas, E.; Giraudo, M.; Goujon, E.; Halma, M.; Knhili, E.; Stauffert, M.; Batisson, I.; Besse-Hoggan, P.; Bohatier, J.; Bouchard, P.; Celle-Jeanton, H.; Costa Gomes, M.; Delbac, F.; Forano, C.; Goupil, P.; Guix, N.; Husson, P.; Ledoigt, G.; Sarraute, S. J. Hazrd. Mater. 2017, 325, 136.  doi: 10.1016/j.jhazmat.2016.11.059

    2. [2]

      Park, C. G.; Jang, M.; Shin, E.; Kim, J. Molecules 2017, 22, 1050.

    3. [3]

      Li, X. C.; Ferreira, D.; Jacob, M. R.; Zhang, Q. F.; Khan, S. I.; ElSohly, H. N.; Nagle, D. G.; Smillie, T. J.; Khan, I. A.; Walker, L. A.; Clark, A. M. J. Am. Chem. Soc. 2004, 126, 6872.

    4. [4]

      Wu, J. W.; Li, B. L.; Tang, C.; Ke, C. Q.; Zhu, N. L.; Qiu, S. X.; Ye, Y. J. Nat. Prod. 2019, 82, 1917.  doi: 10.1021/acs.jnatprod.9b00064

    5. [5]

      Song, J. G.; Su, J. C.; Song, Q. Y.; Huang, R. L.; Tang, W.; Hu, L. J.; Huang, X. J.; Jiang, R. W.; Li, Y. L.; Ye, W. C.; Wang, Y. Org. Lett. 2019, 21, 9579.

    6. [6]

      Qin, X. J.; Liu, H.; Yu, Q.; Yan, H.; Tang, J. F.; An, L. K.; Khan, A.; Chen, Q. R.; Hao, X. J.; Liu, H. Y. Tetrahedron 2017, 73, 1803.  doi: 10.1016/j.tet.2017.01.052

    7. [7]

      Carroll, A. R.; Avery, V. M.; Duffy, S.; Forsterd, P. I.; Guymerd, G. P. Org. Biomol. Chem. 2013, 11, 453.  doi: 10.1039/C2OB26931G

    8. [8]

      Hellyer, R. O. Aust. J. Chem. 1968, 21, 2825.

    9. [9]

      Killeen, D. P.; Larsen, L.; Dayan, F. E.; Gordon, K. C.; Perry, N. B.; van Klink, J. W. J. Nat. Prod. 2016, 79, 564.  doi: 10.1021/acs.jnatprod.5b00968

    10. [10]

      Igarashi, M.; Tetsuka, Y.; Mimura, Y.; Takahashi, A.; Tamamura, T.; Sato, K. J. Antibiot. 1993, 46, 1843.  doi: 10.7164/antibiotics.46.1843

    11. [11]

      Kong, L. Y.; Cui, Q.; Jin, Z.; Xu, X. H. Tetrahedron Lett. 2018, 59, 1705.  doi: 10.1016/j.tetlet.2018.03.038

    12. [12]

      Tagasgira, M.; Watanabe, M.; Uemitsu, N. Biosci., Biotechnol.. Biochem. 1995, 59, 740.  doi: 10.1271/bbb.59.740

    13. [13]

      Senadeera, S. P. D.; Lucantoni, L.; Duffy, S.; Avery, V. M.; Carroll, A. R. J. Nat. Prod. 2018, 81, 1588.  doi: 10.1021/acs.jnatprod.8b00154

    14. [14]

      Wang, S. Y.; Lan, X. Y.; Xiao, J. H.; Yang, J. C.; Kao, Y. T.; Chang, S. T. Phytother. Res. 2008, 22, 213.  doi: 10.1002/ptr.2289

    15. [15]

      Christoph, F.; Kaulfers, P. M.; Stahl-Biskup, E. Planta Med. 2001, 67, 768.  doi: 10.1055/s-2001-18350

    16. [16]

      van Klink, J. W.; Larsen, L.; Perry, N. B.; Weavers, R. T.; Cook, G. M. Bremer, P. J. Bioorg. Med. Chem. 2005, 13, 6651.  doi: 10.1016/j.bmc.2005.07.045

    17. [17]

      Cacic, M.; Trkovnik, M.; Cacic, F.; Has-Schon, E. Molecules 2006, 11, 134.  doi: 10.3390/11010134

    18. [18]

      Beaudegnies, R.; Edmunds, A. J. F.; Fraser, T. E. M.; Hall, R. G.; Hawkes, T. R.; Mitchell, G.; Schaetzer, J.; Wendeborn, S.; Wibley, J. Bioorg. Med. Chem. 2009, 17, 4134.  doi: 10.1016/j.bmc.2009.03.015

    19. [19]

      Lv, P.; Chen, Y.; Zhao, Z.; Shi, T.; Wu, X.; Xue, J.; Li, Q. X.; Hua, R. J. Agric. Food Chem. 2018, 66, 1023.  doi: 10.1021/acs.jafc.7b05491

    20. [20]

      Lei, K.; Sun, D.W.; Hua, X. W.; Tao, Y. Y.; Xu, X. H.; Kong, C. H. Pest Manage. Sci. 2016, 72, 1381.  doi: 10.1002/ps.4164

    21. [21]

      Shestak, O. P.; Novikov, V. L.; Martyyas, E. A.; Anisimov, M. M. Pharm. Chem. J. 2009, 43, 498.  doi: 10.1007/s11094-009-0338-4

    22. [22]

      Gilardoni, G.; Clericuzio, M.; Tosi, S.; Zanoni, G.; Vidari, G. J. Nat. Prod. 2007, 70, 137.  doi: 10.1021/np060512c

    23. [23]

      Christoph, F.; Kaulfers, P. M.; Stahl-Biskup, E. Planta Med. 2000, 66, 556.  doi: 10.1055/s-2000-8604

    24. [24]

      Khambay, B. P. S.; Beddie, D. G.; Hooper, A. M.; Simmonds, M. S. J. Tetrahedron 2003, 59, 7131.  doi: 10.1016/S0040-4020(03)01095-0

    25. [25]

      Li, H. B.; Li, L.; Li, J. X.; Han, T. F.; He, J. L.; Zhu, Y. Q. Pest Manage. Sci. 2018, 74, 579.  doi: 10.1002/ps.4739

    26. [26]

      Wang, D. W.; Lin, H. Y.; He, B.; Wu, F. X.; Chen, T.; Chen, Q.; Yang, W. C.; Yang, G. F. J. Agric. Food Chem. 2016, 64, 8986.  doi: 10.1021/acs.jafc.6b04110

    27. [27]

      Wang, D. W.; Lin, H. Y.; Cao, R. J.; Ming, Z. Z.; Chen, T.; Hao, G. F.; Yang, W. C.; Yang, G. F. Pest Manage. Sci. 2015, 71, 1122.

    28. [28]

      Wang, D. W.; Lin, H. Y.; Cao, R. J.; Chen, T.; Wu, F. X.; Hao, G. F.; Chen, Q.; Yang, W. C.; Yang, G. F. J. Agric. Food Chem. 2015, 63, 5587.  doi: 10.1021/acs.jafc.5b01530

    29. [29]

      Wang, D. W.; Lin, H. Y.; Cao, R. J.; Yang, S. G.; Chen, Q.; Hao, G. F.; Yang, W. C.; Yang, G. F. J. Agric. Food Chem. 2014, 62, 11786.  doi: 10.1021/jf5048089

    30. [30]

      Palwinder Singh, S. Eur. J. Med. Chem. 2014, 74, 440.  doi: 10.1016/j.ejmech.2013.12.047

    31. [31]

      Singh, P.; Kaur, M.; Verma, P. Bioorg. Med. Chem. Lett. 2009, 19, 3054.  doi: 10.1016/j.bmcl.2009.04.014

    32. [32]

      Siddiqui, Z. N.; Musthafa, T. N. M.; Ahmad, A.; Khan, A. U. Bioorg. Med. Chem. Lett. 2011, 21, 2860.  doi: 10.1016/j.bmcl.2011.03.080

    33. [33]

      Yan, Q.; Cao, R. H.; Yi, W.; Chen, Z. Y.; Wen, H.; Ma, L.; Song, H. C. Eur. J. Med. Chem. 2009, 44, 4235.  doi: 10.1016/j.ejmech.2009.05.023

    34. [34]

      Neumann, D. M.; Cammarata, A.; Backes, G.; Palmer, G. E.; Jursic, B. S. Bioorg. Med. Chem. 2014, 22, 813.  doi: 10.1016/j.bmc.2013.12.010

    35. [35]

      Gao, Y.; Xie, J. S.; Tang, R. T.; Yang, K. Y.; Zhang, Y. H.; Chen, L. X.; Li, H. Bioorg. Chem. 2019, 85, 168.  doi: 10.1016/j.bioorg.2018.12.018

    36. [36]

      Laxmi, S. V.; Reddy, Y. T.; Kuarm, B. S.; Reddy, P. N.; Crooks, P. A.; Rajitha, B. Bioorg. Med. Chem. Lett. 2011, 21, 4329.  doi: 10.1016/j.bmcl.2011.05.055

    37. [37]

      Freeman-Cook, K. D.; Reiter, L. A.; Noe, M. C.; Antipas, A. S.; Danley, D. E.; Datta, K.; Downs, J. T.; Eisenbeis, S.; Eskra, J. D.; Garmene, D. J.; Greer, E. M.; Griffiths, R. J.; Guzman, R.; Hardink, J. R.; Janat, F.; Jones, C. S.; Martinelli, G. J.; Mitchella, P. G.; Yocuma, S. A. Bioorg. Med. Chem. Lett. 2007, 17, 6529.  doi: 10.1016/j.bmcl.2007.09.085

    38. [38]

      Kim, S. H.; Pudzianowski, A. T.; Leavitt, K. J.; Barbosa, J.; McDonnell, P. A.; Metzler, W. J.; Rankin, B. M.; Liu, R.; Vaccaro, W.; Pitts, W. Bioorg. Med. Chem. Lett. 2005, 15, 1101.  doi: 10.1016/j.bmcl.2004.12.016

    39. [39]

      Cordato, D. J.; Herkes, G. K.; Mather, L. E.; Morgan, M. K. J. Clin. Neurosci. 2003, 10, 283.  doi: 10.1016/S0967-5868(03)00034-1

    40. [40]

      Willow, M.; Johnston, G. A. R. Int. Rev. Neurobiol. 1983, 24, 15.  doi: 10.1016/S0074-7742(08)60219-6

    41. [41]

      Reddy, Y. T.; Sekhar, K. R.; Sasi, N.; Reddy, P. N.; Freeman, M. L.; Crooks, P. A. Bioorg. Med. Chem. Lett. 2010, 20, 600.  doi: 10.1016/j.bmcl.2009.11.082

    42. [42]

      Altowyan, M. S.; Barakat, A.; Soliman, S. M.; Al-Majid, A. M.; Ali, M.; Elshaier, Y. A. M. M.; Ghabbour, H. A. J. Mol. Struct. 2019, 1175, 524.  doi: 10.1016/j.molstruc.2018.07.105

    43. [43]

      Haldar, M. K.; Scott, M. D.; Sule, N.; Srivastavab, D. K.; Mallik, S. Bioorg. Med. Chem. Lett. 2008, 18, 2373.  doi: 10.1016/j.bmcl.2008.02.066

    44. [44]

      Guerin, D. J.; Mazeas, D.; Musale, M. S.; Naguib, F. N. M.; Safarjalani, O. N. A.; Kouni, M. H.; Panzica, R. P. Bioorg. Med. Chem. Lett. 1999, 9, 1477.  doi: 10.1016/S0960-894X(99)00238-3

    45. [45]

      Lee, D. L.; Carter, C. G. US4797147, 1989.

    46. [46]

      Lei, K.; Li, P.; Yang, X. F.; Wang, S. B.; Wang, X. K.; Hua, X. W.; Sun, B.; Ji, L. S.; Xu, X. H. J. Agric. Food Chem. 2019, 67, 10489.  doi: 10.1021/acs.jafc.9b03109

    47. [47]

      Lei, K.; Liu, Y.; Wang, S. B.; Sun, B.; Hua, X. W.; Xu, X. H. Chem. Res. Chin. Univ. 2019, 35, 609.  doi: 10.1007/s40242-019-9029-1

    48. [48]

      Li, N.; Fu, L. L.; Wang, S. B.; Liu, Y.; Lei, K.; Xu, X. H. J. Liaocheng Univ. (Nat. Sci. Ed.) 2018, 31, 53(in Chinese).

    49. [49]

      Xu, C.; Zhang, Y.; Yu, Y.; Li, Y.; Wei, S. Bioelectromagnetics 2018, 39, 15.  doi: 10.1002/bem.22086

    50. [50]

      Song, Y. J. Integr. Plant Biol. 2014, 56, 106.  doi: 10.1111/jipb.12131

    51. [51]

      Scherer, G. F. E.; Zahn, M.; Callis, J.; Jones, A. M. FEBS Lett. 2007, 581, 4205.  doi: 10.1016/j.febslet.2007.07.059

    52. [52]

      Raghavan, C.; Ong, E. K.; Dalling, M. J.; Stevenson, T. W. Funct. Integr. Genomics 2006, 6, 60.  doi: 10.1007/s10142-005-0012-1

    53. [53]

      Bayramoğlu, D.; Kurtay, G.; Güllü, M. Synth. Commun. 2020, 50, 649.  doi: 10.1080/00397911.2019.1705349

    54. [54]

      Thinnes, C. C.; Lohans, C. T.; Abboud, M. I.; Yeh, T. L.; Tumber, A.; Nowak, R. P.; Attwood, M.; Cockman, M. E.; Oppermann, U.; Loenarz, C.; Schofield, C. J. Chem. Eur. J. 2019, 25, 2019.

  • 加载中
    1. [1]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    2. [2]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    3. [3]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    4. [4]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    5. [5]

      Yulin MaoJingyu MaJiecheng JiYuliang WangWanhua WuCheng Yang . Crown aldoxime ethers: Their synthesis, structure, acid-catalyzed/photo-induced isomerization and adjustable guest binding. Chinese Chemical Letters, 2024, 35(11): 109927-. doi: 10.1016/j.cclet.2024.109927

    6. [6]

      Guoping YangZhoufu LinXize ZhangJiawei CaoXuejiao ChenYufeng LiuXiaoling LinKe Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274

    7. [7]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    8. [8]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    9. [9]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    10. [10]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    11. [11]

      Jing LIANGQian WANGJunfeng BAI . Synthesis and structures of cdq-topological quaternary and (4, 4, 8)-c topological quinary Zn-MOFs with both oxalic acid and triazole ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2186-2192. doi: 10.11862/CJIC.20240177

    12. [12]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    13. [13]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    14. [14]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    15. [15]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    16. [16]

      Ao SunZipeng LiShuchun LiXiangbao MengZhongtang LiZhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972

    17. [17]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    18. [18]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    19. [19]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    20. [20]

      Hui JinQin CaiPeiwen LiuYan ChenDerong WangWeiping ZhuYufang XuXuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721

Metrics
  • PDF Downloads(8)
  • Abstract views(797)
  • HTML views(65)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return