Citation: Jin Jikang, Xia Huimin, Zhang Fenglian, Wang Yifeng. Lewis-Base Boryl Radicals Enabled Borylation, Radical Catalysis and Reduction Reactions[J]. Chinese Journal of Organic Chemistry, ;2020, 40(8): 2185-2194. doi: 10.6023/cjoc202005017 shu

Lewis-Base Boryl Radicals Enabled Borylation, Radical Catalysis and Reduction Reactions

  • Corresponding author: Wang Yifeng, yfwangzj@ustc.edu.cn
  • Received Date: 7 May 2020
    Revised Date: 19 May 2020
    Available Online: 27 May 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21672195, 21702201, 21971226) and the Fundamental Research Funds for the Central Universities (No. WK2060190082)the Fundamental Research Funds for the Central Universities WK2060190082the National Natural Science Foundation of China 21702201the National Natural Science Foundation of China 21672195the National Natural Science Foundation of China 21971226

Figures(11)

  • Free radical reactions represent an efficient and significant tool to construct organic molecules by taking advantages of the high-efficiency, remarkable selectivity and good functional groups tolerance. Lewis-base boryl radicals are a class of species that possess unique structures and chemical reactivity, and a variety of synthetic applications have been developed. This account summarizes the research advances in this research field mainly contributed by our group. The results include Lewis-based boryl radicals enabled borylation reactions, Lewis-based boryl radicals-catalyzed new reactions, and Lewis-based boryl radicals promoted reduction reactions. These reactions feature mild reaction conditions, good functional groups compatibility, high yields, and excellent chemo-, regio-, and stereo-selectivities.
  • 加载中
    1. [1]

      Roberts, B. P. Chem. Soc. Rev. 1999, 28, 25.  doi: 10.1039/a804291h

    2. [2]

      (a) Ueng, S.-H.; Makhlouf Brahmi, M.; Derat, É.; Fensterbank, L.; Lacôte, E.; Malacria, M.; Curran, D. P. J. Am. Chem. Soc. 2008, 130, 10082.
      (b) Ueng, S.-H.; Fensterbank, L.; Lacôte, E.; Malacria, M.; Curran, D. P. Org. Lett. 2010, 12, 3002.

    3. [3]

      Pan, X.; Lacôte, E.; Lalevée, J.; Curran, D. P. J. Am. Chem. Soc. 2012, 134, 5669.  doi: 10.1021/ja300416f

    4. [4]

      (a) Pan, X.; Lalevée, J.; Lacôte, E.; Curran, D. P. Adv. Synth. Catal. 2013, 355, 3522.
      (b) Ueng, S.-H.; Fensterbank, L.; Lacôte, E.; Malacria, M.; Curran, D. P. Org. Biomol. Chem. 2011, 9, 3415.

    5. [5]

      Kawamoto, T.; Geib, S. J.; Curran, D. P. J. Am. Chem. Soc. 2015, 137, 8617.  doi: 10.1021/jacs.5b04677

    6. [6]

      Tehfe, M.-A.; Makhlouf Brahmi, M.; Fouassier, J.-P.; Curran, D. P.; Malacria, M.; Fensterbank, L.; Lacôte, E.; Lalevée, J. Macromolecules 2010, 43, 2261.  doi: 10.1021/ma902492q

    7. [7]

      Hall, D. G. Boronic Acids:Preparation and Applications in Organic Synthesis, Medicine and Materials, 2nd ed., Wiley-VCH, Weinheim, Germany, 2011.

    8. [8]

      (a) Burgess, K.; Ohlmeyer, M. J. Chem. Rev. 1991, 91, 1179.
      (b) Brown, H. C.; Singaram, B. Acc. Chem. Res. 1988, 21, 287.
      (c) Brown, H. C.; Rao, B. C. S. J. Am. Chem. Soc. 1956, 78, 5694.

    9. [9]

      (a) Ishiyama, T.; Murata, M.; Miyaura, N. J. Org. Chem. 1995, 60, 7508.
      (b) Ishiyama, T.; Matsuda, N.; Miyaura, N.; Suzuki, A. J. Am. Chem. Soc. 1993, 115, 11018.

    10. [10]

    11. [11]

    12. [12]

      Ren, S.-C.; Zhang, F.-L.; Qi, J.; Huang, Y.-S.; Xu, A.-Q.; Yan, H.-Y.; Wang, Y.-F. J. Am. Chem. Soc. 2017, 139, 6050.  doi: 10.1021/jacs.7b01889

    13. [13]

      (a) Walton, J. C.; Brahmi, M. M.; Fensterbank, L.; Lacôte, E.; Malacria, M.; Chu, Q.; Ueng, S.-H.; Solovyev, A.; Curran, D. P. J. Am. Chem. Soc. 2010, 132, 2350.
      (b) Ueng, S.-H.; Solovyev, A.; Yuan, X.; Geib, S. J.; Fensterbank, L.; Lacôte, E.; Malacria, M.; Newcomb, M.; Walton, J. C.; Curran, D. P. J. Am. Chem. Soc. 2009, 131, 11256.

    14. [14]

      Solovyev, A.; Chu, Q.; Geib, S. J.; Fensterbank, L.; Malacria, M.; Lacôte, E.; Curran, D. P. J. Am. Chem. Soc. 2010, 132, 15072.  doi: 10.1021/ja107025y

    15. [15]

      Nerkar, S.; Curran, D. P. Org. Lett. 2015, 17, 3394.  doi: 10.1021/acs.orglett.5b01101

    16. [16]

      Watanabe, T.; Hirose, D.; Curran, D. P.; Taniguchi, T. Chem.-Eur. J. 2017, 23, 5404.  doi: 10.1002/chem.201700689

    17. [17]

      (a) Taylor, R. D.; MacCoss, M.; Lawson, A. D. G. J. Med. Chem. 2014, 57, 5845.
      (b) Luca, C.; Daniela, B. Curr. Med. Chem. 2006, 13, 65.

    18. [18]

      (a) Zheng, Y.; Tice, C. M.; Singh, S. B. Bioorg. Med. Chem. Lett. 2014, 24, 3673.
      (b) Aldeghi, M.; Malhotra, S.; Selwood, D. L.; Chan, A. W. E. Chem. Biol. Drug Des. 2014, 83, 450.

    19. [19]

      (a) Kubota, K.; Watanabe, Y.; Hayama, K.; Ito, H. J. Am. Chem. Soc. 2016, 138, 4338.
      (b) Yamamoto, E.; Takenouchi, Y.; Ozaki, T.; Miya, T.; Ito, H. J. Am. Chem. Soc. 2014, 136, 16515.
      (c) Sasaki, Y.; Zhong, C.; Sawamura, M.; Ito, H. J. Am. Chem. Soc. 2010, 132, 1226.
      (d) Lee, K.-s.; Zhugralin, A. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 7253.
      (e) Bonet, A.; Gulyás, H.; Fernández, E. Angew. Chem., Int. Ed. 2010, 49, 5130.
      (f) Feng, X.; Yun, J. Chem. Commun. 2009, 6577.
      (g) Bonet, A.; Sole, C.; Gulyás, H.; Fernández, E. Chem. Asian J. 2011, 6, 1011.

    20. [20]

      Qi, J.; Zhang, F.-L.; Huang, Y.-S.; Xu, A.-Q.; Ren, S.-C.; Yi, Z.-Y.; Wang, Y.-F. Org. Lett. 2018, 20, 2360.  doi: 10.1021/acs.orglett.8b00694

    21. [21]

      (a) Thomas, G. L.; Johannes, C. W. Curr. Opin. Chem. Biol. 2011, 15, 516.
      (b) Welsch, M. E.; Snyder, S. A.; Stockwell, B. R. Curr. Opin. Chem. Biol. 2010, 14, 347.
      (c) Oehlrich, D.; Prokopcova, H.; Gijsen, H. J. M. Bioorg. Med. Chem. Lett. 2014, 24, 2033.
      (d) Edwards, P. D.; Albert, J. S.; Sylvester, M.; Aharony, D.; Andisik, D.; Callaghan, O.; Campbell, J. B.; Carr, R. A.; Chessari, G.; Congreve, M.; Frederickson, M.; Folmer, R. H. A.; Geschwindner, S.; Koether, G.; Kolmodin, K.; Krumrine, J.; Mauger, R. C.; Murray, C. W.; Olsson, L.-L.; Patel, S.; Spear, N.; Tian, G. J. Med. Chem. 2007, 50, 5912.
      (e) Shankaran, K.; Donnelly, K. L.; Shah, S. K.; Guthikonda, R. N.; MacCoss, M.; Humes, J. L.; Pacholok, S. G.; Grant, S. K.; Kelly, T. M.; Wong, K. K. Bioorg. Med. Chem. Lett. 2004, 14, 4539.
      (f) Kshirsagar, U. A. Org. Biomol. Chem. 2015, 13, 9336.

    22. [22]

      Jin, J.-K.; Zhang, F.-L.; Zhao, Q.; Lu, J.-A.; Wang, Y.-F. Org. Lett. 2018, 20, 7558.  doi: 10.1021/acs.orglett.8b03303

    23. [23]

      (a) Demay, S.; Volant, F.; Knochel, P. Angew. Chem., Int. Ed. 2001, 40, 1235.
      (b) Evans, D. A.; Fu, G. C.; Hoveyda, A. H. J. Am. Chem. Soc. 1992, 114, 6671.

    24. [24]

      Zhou, N.; Yuan, X.-A.; Zhao, Y., Xie, J.; Zhu, C. Angew. Chem., Int. Ed. 2018, 57, 3990.  doi: 10.1002/anie.201800421

    25. [25]

      Shimoi, M.; Watanabe, T.; Maeda, K.; Curran, D. P.; Taniguchi, T. Angew. Chem., Int. Ed. 2018, 57, 9485.  doi: 10.1002/anie.201804515

    26. [26]

      (a) Brauer, D. J.; Bürger, H.; Buchheim-Spiegel, S.; Pawelke, G. Eur. J. Inorg. Chem. 1999, 1999, 255.
      (b) Bai, J.; Burke, L. D.; Shea, K. J. J. Am. Chem. Soc. 2007, 129, 4981.
      (c) Caskey, S. R.; Stewart, M. H.; Johnson, M. J. A.; Kampf, J. W. Angew. Chem., Int. Ed. 2006, 45, 7422.
      (d) Bell, N. J.; Cox, A. J.; Cameron, N. R.; Evans, J. S. O.; Marder, T. B.; Duin, M. A.; Elsevier, C. J.; Baucherel, X.; Tulloch, A. A. D.; Tooze, R. P. Chem. Commun. 2004, 1854.
      (e) Ansorge, A.; Brauer, D. J.; Bürger, H.; Hagen, T.; Pawelke, G. Angew. Chem., Int. Ed. 1993, 32, 384.
      (f) Denis, St. J. D.; He, Z.; Yudin, A. K. ACS Catal. 2015, 5, 5373.
      (g) He, Z.; Zajdlik, A.; Yudin, A. K. Acc. Chem. Res. 2014, 47, 1029.

    27. [27]

      (a) Kan, S. B. J.; Huang, X.; Gumulya, Y.; Chen, K.; Arnold, F. H. Nature 2017, 552, 132.
      (b) Yang, J.-M.; Zhao, Y.-T.; Li, Z.-Q.; Gu, X.-S.; Zhu, S.-F.; Zhou, Q.-L. ACS Catal. 2018, 8, 7351.
      (c) Cheng, Q.-Q.; Zhu, S.-F.; Zhang, Y.-Z.; Xie, X.-L.; Zhou, Q.-L. J. Am. Chem. Soc. 2013, 135, 14094.
      (d) Allen, T. H.; Kawamoto, T.; Gardner, S.; Geib, S. J.; Curran, D. P. Org. Lett. 2017, 19, 3680.
      (e) Li, X.; Curran, D. P. J. Am. Chem. Soc. 2013, 135, 12076.
      (f) Corless, V. B.; Holownia, A.; Foy, H.; Mendoza-Sanchez, R.; Adachi, S.; Dudding, T.; Yudin, A. K. Org. Lett. 2018, 20, 5300.
      (g) Lv, W.-X.; Zeng, Y.-F.; Li, Q.; Chen, Y.; Tan, D.-H.; Yang, L.; Wang, H. Angew. Chem., Int. Ed. 2016, 55, 10069.
      (h) Li, J.; Burke, M. D. J. Am. Chem. Soc. 2011, 133, 13774.
      (i) He, Z.; Yudin, A. K. J. Am. Chem. Soc. 2011, 133, 13770.

    28. [28]

      Ren, S.-C.; Zhang, F.-L.; Xu, A.-Q.; Yang, Y.; Zheng, M.; Zhou, X.; Fu, Y.; Wang, Y.-F. Nat. Commun. 2019, 10, 1934.  doi: 10.1038/s41467-019-09825-3

    29. [29]

      Liu, L.; Chen, Q.; Wu, Y.-D.; Li, C. J. Org. Chem. 2005, 70, 1539.  doi: 10.1021/jo0481349

    30. [30]

      Zhu, C.; Dong, J.; Liu, X.; Gao, L.; Zhao, Y.; Xie, J.; Li, S.; Zhu, C. Angew. Chem., Int. Ed. 2020, 59, 12817.  doi: 10.1002/anie.202005749

    31. [31]

      Huang, Y.-S.; Wang, J.; Zheng, W.-X.; Zhang, F.-L.; Yu, Y.-J.; Zheng, M.; Zhou, X.; Wang, Y.-F. Chem. Commun. 2019, 55, 11904.  doi: 10.1039/C9CC06506G

    32. [32]

      (a) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
      (b) Hagmann, W. K. J. Med. Chem., 2008, 51, 4359.
      (c) Babudri, F.; Farinola, G. M.; Naso, F.; Ragni, R. Chem. Commun. 2007, 1003.
      (d) O'Hagan, D.; S. Rzepa, H.; Chem. Commun. 1997, 645.

    33. [33]

      Hiyama, T.; Yamamoto, H. In Organofluorine Compounds: Chemistry and Applications, Eds.: Hiyama T.; Yamamoto, H., Springer Berlin Heidelberg, Berlin, 2000, pp. 25~76.

    34. [34]

      Jin, J.-K.; Zheng, W.-X.; Xia, H.-M.; Zhang, F.-L.; Wang, Y.-F. Org. Lett. 2019, 21, 8414.  doi: 10.1021/acs.orglett.9b03173

    35. [35]

      (a) Couve-Bonnaire, S.; Cahard, D.; Pannecoucke, X. Org. Biomol. Chem. 2007, 5, 1151.
      (b) Vedejs, E.; Fields, S. C.; Hayashi, R.; Hitchcock, S. R.; Powell, D. R.; Schrimpf, M. R. J. Am. Chem. Soc. 1999, 121, 2460.
      (c) Daubresse, N.; Chupeau, Y.; Francesch, C.; Lapierre, C.; Pollet, B.; Rolando, C. Chem. Commun. 1997, 1489.
      (d) Van der Veken, P.; Senten, K.; Kertèsz, I.; De Meester, I.; Lambeir, A.-M.; Maes, M.-B.; Scharpé, S.; Haemers, A.; Augustyns, K. J. Med. Chem. 2005, 48, 1768.

    36. [36]

      Liu, X.; Lin, E.-E.; Chen, G.; Li, J.-L.; Liu, P.; Wang, H. Org. Lett. 2019, 21, 8454.  doi: 10.1021/acs.orglett.9b03218

    37. [37]

      Qi, J.; Zhang, F.-L.; Jin, J.-K.; Zhao, Q.; Li, B.; Liu, L.-X.; Wang, Y.-F. Angew. Chem., Int. Ed. 2020, 59, 12876.  doi: 10.1002/anie.201915619

    38. [38]

      Xia, P.-J.; Song, D.; Ye, Z.-P.; Hu, Y.-Z.; Xiao, J.-A.; Xiang, H.-Y.; Chen, X.-Q.; Yang, H. Angew. Chem., Int. Ed. 2020, 59, 6706.  doi: 10.1002/anie.201913398

    39. [39]

      Dai, W.; Geib, S. J.; Curran, D. P. J. Am. Chem. Soc. 2020, 142, 6261.  doi: 10.1021/jacs.0c00490

    40. [40]

      (a) Feldman, K. S.; Romanelli, A. L.; Ruckle, R. E.; Miller, R. F. J. Am. Chem. Soc. 1988, 110, 3300.
      (b) Feldman, K. S.; Simpson, R. E. J. Am. Chem. Soc. 1989, 111, 4878.
      (c) Miura, K.; Fugami, K.; Oshima, K.; Utimoto, K. Tetrahedron Lett. 1988, 29, 5135.
      (d) Feldman, K. S.; Romanelli, A. L.; Ruckle, R. E.; Jean, G. J. Org. Chem. 1992, 57, 100.
      (e) Feldman, K. S.; Berven, H. M.; Weinreb, P. H. J. Am. Chem. Soc. 1993, 115, 11364.
      (f) Journet, M.; Rouillard, A.; Cai, D.; Larsen, R. D. J. Org. Chem. 1997, 62, 8630.
      (g) Feldman, K. S.; Fisher, T. E. Tetrahedron 1989, 45, 2969.
      (h) Kim, S.; Lee, S. Tetrahedron Lett. 1991, 32, 6575.
      (i) Zhang, H.; Jeon, K. O.; Hay, E. B.; Geib, S. J.; Curran, D. P.; LaPorte, M. G. Org. Lett. 2014, 16, 94.
      (k) Zhang, H.; Curran, D. P. J. Am. Chem. Soc. 2011, 133, 10376.

    41. [41]

      Hashimoto, T.; Kawamata, Y.; Maruoka, K. Nat. Chem. 2014, 6, 702.  doi: 10.1038/nchem.1998

    42. [42]

      (a) Zhao, Q.-Q.; Zhou, X.-S.; Xu, S.-H.; Wu, Y.-L.; Xiao, W.-J.; Chen, J.-R. Org. Lett. 2020, 22, 2470.
      (b) Zhao, Q.-Q.; Chen J.; Zhou, X.-S.; Yu, X.-Y.; Chen, J.-R.; Xiao, W.-J. Chem.-Eur. J. 2019, 25, 8024.
      (c) Yu, X.-Y.; Zhao Q.-Q.; Chen, J.; Xiao, W.-J.; Chen, J.-R. Acc. Chem. Res. 2020, 53, 1066.

    43. [43]

      Xu, A.-Q.; Zhang, F.-L.; Ye, T.; Yu, Z.-X.; Wang, Y.-F. CCS Chem. 2019, 1, 504.  doi: 10.31635/ccschem.019.20190025

    44. [44]

      (a) Kuivila, H. G. Acc. Chem. Res. 1968, 1, 299.
      (b) Neumann, W. P. Synthesis 1987, 665.

    45. [45]

      (a) Boyer, I. J. Toxicology 1989, 55, 253.
      (b) Ingham, R. K., Rosenberg, S. D., Gilman, H. Chem. Rev. 1960, 60, 459.

    46. [46]

      (a) Hurd, R. N.; DeLaMater, G. Chem. Rev. 1961, 61, 45.
      (b) Guo, W.-S.; Wen, L.-R.; Li, M. Org. Biomol. Chem. 2015, 13, 1942.
      (c) Jagodziński, T. S. Chem. Rev. 2003, 103, 197.

    47. [47]

      Wertheim, E. J. Am. Chem. Soc. 1935, 57, 545.  doi: 10.1021/ja01306a048

    48. [48]

      Yu, Y.-J.; Zhang, F.-L.; Cheng, J.; Hei, J.-H.; Deng, W.-T.; Wang, Y.-F. Org. Lett. 2018, 20, 24.  doi: 10.1021/acs.orglett.7b03201

    49. [49]

      Du, W.; Curran, D. P. Org. Lett. 2003, 5, 1765.  doi: 10.1021/ol0344319

    50. [50]

      (a) Wang, J.; Qin, T., Chen, T.-G.; Wimmer, L.; Edwards, J. T.; Cornella, J.; Vokits, B.; Shaw, S. A.; Baran, P. S. Angew. Chem., Int. Ed. 2016, 55, 9676.
      (b) Toriyama, F.; Cornella, J.; Wimmer, L.; Chen, T.-G.; Dixon, D. D; Creech, G.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 11132.
      (c) Qin, T.; Cornella, J.; Li, C.; Malins, L. R.; Edwards, J. T.; Kawamura, S.; Maxwell, B. D.; Eastgate, M. D.; Baran, P. S. Science 2016, 352, 801.
      (d) Qin, T.; Malins, L. R.; Edwards, J. T.; Merchant, R. R.; Novak, A. J. E.; Zhong, J. Z.; Mills, R. B.; Yan, M.; Yuan, C.; Eastgate, M. D.; Baran, P. S. Angew. Chem., Int. Ed. 2017, 56, 260.
      (e) Huihui, K. M. M.; Caputo, J. A.; Melchor, Z.; Olivares, A. M.; Spiewak, A. M.; Johnson, K. A.; DiBenedetto, T. A.; Kim, S.; Ackerman, L. K. G.; Weix, D. J. J. Am. Chem. Soc. 2016, 138, 5016.
      (f) Lackner, G. L.; Quasdorf, K. W.; Overman, L. E. J. Am. Chem. Soc. 2013, 135, 15342.
      (g) Lackner, G. L.; Quasdorf, K. W.; Pratsch, G.; Overman, L. E. J. Org. Chem. 2015, 80, 6012.
      (h) Slutskyy, Y.; Overman, L. E. Org. Lett. 2016, 18, 2564.
      (i) Huang, L.; Olivares, A. M.; Weix, D. J. Angew. Chem., Int. Ed. 2017, 56, 11901.
      (j) Tlahuext-Aca, A.; Garza-Sanchez, R. A.; Glorius, F. Angew. Chem., Int. Ed. 2017, 56, 3708.
      (k) Kachkovskyi, G.; Faderl, C.; Reiser, O. Adv. Synth. Catal. 2013, 355, 2240.
      (l) Jiang, M.; Yang, H.; Fu, H. Org. Lett. 2016, 18, 1968.
      (m) Candish, L.; Teders, M.; Glorius, F. J. Am. Chem. Soc. 2017, 139, 7440.
      (n) Fawcett, A.; Pradeilles, J.; Wang, Y.; Mutsuga, T.; Myers, E. L.; Aggarwal, V. K. Science 2017, 357, 283.
      (o) Murarka, S. Adv. Synth. Catal. 2018, 360, 1735.

    51. [51]

      Lu, X.; Xiao, B.; Liu, L.; Fu, Y. Chem. Eur. J. 2016, 22, 11161.  doi: 10.1002/chem.201602486

    52. [52]

      Jin J.-K.; Zhang F.-L.; Wang Y.-F. Acta Chim. Sinica 2019, 77, 889(in Chinese).  doi: 10.6023/A19050173

    53. [53]

      Gao, L.; Wang, G.; Cao, J.; Yuan, D.; Xu, C.; Guo, X.; Li, S. Chem. Commun. 2018, 54, 11534.  doi: 10.1039/C8CC06152A

  • 加载中
    1. [1]

      Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055

    2. [2]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    3. [3]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    4. [4]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    5. [5]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    6. [6]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    7. [7]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    8. [8]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    9. [9]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    10. [10]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    11. [11]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    12. [12]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    13. [13]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    14. [14]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    15. [15]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    16. [16]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    17. [17]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    18. [18]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    19. [19]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    20. [20]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

Metrics
  • PDF Downloads(118)
  • Abstract views(4035)
  • HTML views(1436)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return