Citation: Lin Zhiqing, Xia Wanling, Liu Renyi, Jiang Shaohua, Ma Zhiqiang. Synthesis of Cinnamic Acid-Coumarin Ester Analogs and Inhibition of Tyrosinase Activity[J]. Chinese Journal of Organic Chemistry, ;2020, 40(9): 2980-2987. doi: 10.6023/cjoc202005006 shu

Synthesis of Cinnamic Acid-Coumarin Ester Analogs and Inhibition of Tyrosinase Activity

  • Corresponding author: Jiang Shaohua, wyuchemjsh@126.com Ma Zhiqiang, 23090330@qq.com
  • Received Date: 4 May 2020
    Revised Date: 29 May 2020
    Available Online: 19 June 2020

    Fund Project: the Department of Education of Guangdong Province 19KZDXM035the Department of Education of Guangdong Province 2017KSYS010the Department of Education of Guangdong Province 2017KZDXM084Project supported by the Department of Education of Guangdong Province (Nos. 2017KSYS010, 2017KZDXM084, 2019KZDZX2003, 19KZDXM035)the Department of Education of Guangdong Province 2019KZDZX2003

Figures(4)

  • In medicinal chemistry, the structural modification of natural product and skeleton hybridization strategies is important way to improve the biological activity of template compound and find highly active lead compounds. In this work, two series of cinnamic acid-coumarin ester analogs were synthesized by using cinnamic acid and hydroxycoumarin as raw materials. And the tyrosinase inhibitory activity of the synthesized compounds was evaluated. The results indicated that the cinnamic acid-coumarin analogs had favourable tyrosinase inhibitory activity, especially 2-oxo-2H-benzopyran-4-yl(E)-3-(4-hydroxyphenyl)propenyl ester (C8), 2-oxo-2H-benzopyran-7-yl(E)-3-(4-hydroxyphenyl)propenyl ester and (D8) with IC50 of (10.7±0.7) and (2.2±0.2) μmol·L-1, respectively, which are 3 and 13 times that of kojic acid (IC50 (28.5±1.1) μmol·L-1). The structure-activity relationship analysis results showed that the introduction of substituents like F, Cl, and OH could efficiently enhance the tyrosinase inhibitory activity, and the inhibitory activity of condensation product of substituted cinnamic acid with 7-hydroxycoumarin was higher than that of substituted cinnamic acid with 4-hydroxycoumarin. Kinetic studies showed that the inhibitions of tyrosinase by compounds C8 and D8 are reversible mixed-type inhibitory effects. KI values of C8 and D8 were 1.07 and 20.61 μmol·L-1, respectively, and KIS values were 3.72 and 27.09 μmol·L-1, respectively. Finally, molecular docking was carried out to simulate the docking between compounds C8 and D8 with tyrosinase.
  • 加载中
    1. [1]

      Xu, Y.; Lei, P.; Ling, Y.; Wang, S. W.; Yang X. L. Chin. J. Org. Chem. 2014, 34, 1118(in Chinese).
       

    2. [2]

      Wu, L. D.; Rathi, B.; Chen, Y.; Wu, X. H.; Liu, H.; Li, J. C.; Ming, A. J.; Han, G. RSC Adv. 2018, 69, 39529.

    3. [3]

      Rainer, B.; Revoltella, S.; Mayr, F.; Moesslacher, J.; Scalfari, V.; Kohl, R.; Waltenberger, B.; Pagitz, K.; Siewert, B.; Schwaiger, S.; Stuppner, H. Eur. J. Med. Chem. 2019, 184, 111738.  doi: 10.1016/j.ejmech.2019.111738

    4. [4]

      Rosada, B.; Bekier, A.; Cytarska, J.; Plazinski, W.; Zavyalova, O.; Sikora, A.; Dzitko, K.; Laczkowski, K. Z. Eur. J. Med. Chem. 2019, 184, 111765.  doi: 10.1016/j.ejmech.2019.111765

    5. [5]

      Chen, J. M.; Li, Q. L.; Ye, Y. L.; Huang, Z. Y.; Ruan, Z. P.; Jin, N. Spectrochim. Acta. A 2020, 226, 117642.  doi: 10.1016/j.saa.2019.117642

    6. [6]

      Lee, B.; Moon, K. M.; Lim, J. S.; Park, Y.; Kim, D. H.; Son, S.; Jeong, H. O.; Kim, D. H.; Lee, E. K.; Chung, K. W.; An, H. J.; Chun, P.; Seo, A. Y.; Yang, J. H.; Lee, B. S.; Ma, J. Y.; Cho, W. K.; Moon, H. R.; Chung, H. Y. Oncotarget 2017, 8, 91481.  doi: 10.18632/oncotarget.20690

    7. [7]

      Hwang, Y. S.; Oh, S. W.; Park, S. H.; Lee, J.; Yoo, J. A.; Kwon, K.; Park, S. J.; Kim, J.; Yu, E.; Cho, J. Y.; Lee, J. Oxid. Med. Cell. Longevity 2019, 9827519.

    8. [8]

      Raza, H.; Abbasi, M. A.; Aziz-ur-Rehman.; Siddiqui, S. Z.; Hassan, M.; Abbas, Q.; Hong, H.; Shah, S. A. A.; Shahid, M.; Seo, S. Y. Bioorg. Chem. 2020, 94, 103445.  doi: 10.1016/j.bioorg.2019.103445

    9. [9]

      Cai, P. G.; Xiong, Y.; Yao, Y.; Chen, W.; Dong, X. W. New J. Chem. 2019, 43, 14102.  doi: 10.1039/C9NJ02360G

    10. [10]

      Pillaiyar, T.; Manickam, M.; Namasivayam, V. J. Enzyme Inhib. Med. Chem. 2017, 32, 403.  doi: 10.1080/14756366.2016.1256882

    11. [11]

      Ho, Y. S.; Wu, J. Y.; Chang, C. Y. Antioxidants 2019, 8, 474.  doi: 10.3390/antiox8100474

    12. [12]

      Arrowitz, C.; Schoelermann, A. M.; Mann, T.; Jiang, L. I.; Weber, T.; Kolbe, L. J. Invest. Dermatol. 2019, 139, 1691.  doi: 10.1016/j.jid.2019.02.013

    13. [13]

      Paudel, P.; Seong, S. H.; Wagle, A.; Min, B. S.; Jung, H. A.; Choi, J. S. Food Chem. 2020, 309, 125739.  doi: 10.1016/j.foodchem.2019.125739

    14. [14]

      Zhang, L.; Zhao, X.; Tao, G. J.; Chen, J.; Zheng, Z. P. Food Chem. 2017, 223, 40.  doi: 10.1016/j.foodchem.2016.12.017

    15. [15]

      Micheloni, O. B.; Farroni, A. E.; Garcia, P.; Furlan, R. L. E. Food Chem. 2018, 269, 638.  doi: 10.1016/j.foodchem.2018.07.025

    16. [16]

      Wang, R.; Chai, W. M.; Yang, Q.; Wei, M. K.; Peng, Y. Y. Bioorg. Med. Chem. 2016, 24, 4620.  doi: 10.1016/j.bmc.2016.07.068

    17. [17]

      Bhosle, M. R.; Khillare, L. D.; Mali, J. R.; Sarkate, A. P.; Lokwani, D. K.; Tiwari, S. V. New J. Chem. 2018, 42, 18621.  doi: 10.1039/C8NJ04622K

    18. [18]

      Dinparast, L.; Hemmati, S.; Zengin, G.; Alizadeh, A. A.; Bahadori, M. B.; Kafil, H. S.; Dastmalchi, S. ChemistrySelect 2019, 4, 9211.  doi: 10.1002/slct.201901921

    19. [19]

      Santi, M. D.; Bouzidi, C.; Gorod, N. S.; Puiatti, M.; Michel, S.; Grougnet, R.; Ortega, M. G. Bioorg. Chem. 2019, 82, 241.  doi: 10.1016/j.bioorg.2018.10.034

    20. [20]

      Saeedi, M.; Eslamifar, M.; Khezri, K. Biomed. Pharmacother. 2019, 110, 582.  doi: 10.1016/j.biopha.2018.12.006

    21. [21]

      Taofiq, O.; Heleno, S. A.; Calhelha, R. C.; Fernandes, I. P.; Alves, M. J.; Barros, L.; Gonzalez-Paramas, A. M.; Ferreira, I.; Barreiro, M. F. Microchem. J. 2019, 147, 469.  doi: 10.1016/j.microc.2019.03.059

    22. [22]

      Tavares-da-Silva, E. J.; Varela, C. L.; Pires, A. S.; Encarnacao, J. C.; Abrantes, A. M.; Botelho, M. F.; Carvalho, R. A.; Proenca, C.; Freitas, M.; Fernandes, E.; Roleira, F. M. F. Bioorg. Med. Chem. 2016, 24, 3556.  doi: 10.1016/j.bmc.2016.05.065

    23. [23]

      Zhao, Z. F.; Liu, G. X.; Meng, Y. F.; Tian, J. L.; Chen, X. F.; Shen, M. L.; Li, Y. X.; Li, B. Y.; Gao, C.; Wu, S. P.; Li, C. Q.; He, X. R.; Jiang, R.; Qian, M. C.; Zheng, X. H. Bioorg. Chem. 2019, 93, 103316.  doi: 10.1016/j.bioorg.2019.103316

    24. [24]

      Zhang, X. B.; Ma, H. Y.; Sun, T. D.; Lei, P.; Yang, X. L.; Zhang, X. M.; Ling, Y. Chin. J. Org. Chem. 2019, 39, 2965(in Chinese).
       

    25. [25]

      Hussain, M. I.; Syed, Q. A.; Khattak, M. N. K.; Hafez, B.; Reigosa, M. J.; El-Keblawy, A. Biologia 2019, 74, 863.  doi: 10.2478/s11756-019-00242-x

    26. [26]

      Kurt, Z. B.; Sonmez, F.; Ozturk, D.; Akdemir, A; Angeli, A; Supuran, C. T. Eur. J. Med. Chem. 2019, 183, 111702.  doi: 10.1016/j.ejmech.2019.111702

    27. [27]

      Menezes, J. C. J. M. D. S.; Diederich, M. F. Eur. J. Med. Chem. 2019, 182, 111637.  doi: 10.1016/j.ejmech.2019.111637

    28. [28]

      Qiao, L. L.; Wei, Y.; Hao, S. H. Chin. J. Org. Chem. 2018, 38, 509(in Chinese).
       

    29. [29]

      Xu, X. T.; Chen, J.; Lin, Z. Q.; Li, D. L.; Zhang, K.; Sheng, Z. J.; Wang, S. H.; Zhu, S.; Asiri, A. Chin. J. Org. Chem. 2019, 39, 2958(in Chinese).
       

    30. [30]

      Wang, S. H.; Zhang, B. H.; Chen, J.; Zheng, Y. Y.; Feng, N.; Ma, A. J.; Xu, X. T.; Asiri, A. Chin. J. Org. Chem. 2020, 40, 15(in Chinese).
       

    31. [31]

      Xu, L.; Wang, S. H.; Li, H. Chin. J. Org. Chem. 2015, 35, 1559(in Chinese).
       

    32. [32]

      Xu, X. T.; Deng, X. Y.; Chen, J.; Liang, Q. M.; Zhang, K.; Li, D. L.; Wu, P. P.; Zheng, X.; Zhou, R. P.; Jiang, Z. Y.; Ma, A. J.; Chen, W. H.; Wang, S. H. Eur. J. Med. Chem. 2019, 189, 112013.

    33. [33]

      Zhong, Y. Y.; Yu, L. J.; He, Q. Y.; Zhu, Q. Y.; Zhang, C. G.; Cui, X. P.; Zheng, J. X.; Zhao, S. Q. ACS Appl. Mater. Interfaces 2019, 11, 32769.  doi: 10.1021/acsami.9b11754

  • 加载中
    1. [1]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    2. [2]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    3. [3]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    4. [4]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    5. [5]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    6. [6]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    7. [7]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    8. [8]

      Feiyang Liu Liuhong Song Miaoyu Fu Zhi Zheng Gang Xie Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037

    9. [9]

      Manman Jin Zhiguo Lv Qingtao Niu . Teaching Reformation and Case Study for “Chemical Process Development and Design” Based on “Just-in-Time” Dynamic and Accurate Matching Industrial Needs. University Chemistry, 2024, 39(11): 108-116. doi: 10.12461/PKU.DXHX202403030

    10. [10]

      Yixuan Zhu Qingtong Wang Jin Li Lin Chen Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090

    11. [11]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    12. [12]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    13. [13]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    14. [14]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    15. [15]

      Yukun Xing Xiaoyu Xie Fangfang Chen . A Sunlit Gift: Vitamin D. University Chemistry, 2024, 39(9): 28-34. doi: 10.12461/PKU.DXHX202402006

    16. [16]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    17. [17]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    18. [18]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    19. [19]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    20. [20]

      Meiyu Lin Yuxin Fang Songzhang Shen Yaqian Duan Wenyi Liang Chi Zhang Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042

Metrics
  • PDF Downloads(17)
  • Abstract views(1398)
  • HTML views(301)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return