Application of Iodine and Iodide in Photocatalysis Organic Synthesis
- Corresponding author: Liu Yang, 348596994@qq.com Liu Yingjie, liuyj691@nenu.edu.cn
Citation: Liu Yang, Lin Liqing, Han Yinghui, Liu Yingjie. Application of Iodine and Iodide in Photocatalysis Organic Synthesis[J]. Chinese Journal of Organic Chemistry, ;2020, 40(12): 4216-4227. doi: 10.6023/cjoc202004053
Hu, A.-Z.; Tang, C.-Q. J. Funct. Mater. 2001, 32, 586(in Chinese).
doi: 10.3321/j.issn:1001-9731.2001.06.008
(a) Liu, Y.-Y.; Liang, D.; Lu, L.-Q.; Xiao, W.-J. Chem. Commun. 2019, 55, 4853.
(b) Li, F.-Y.; Tian, D.; Fan, Y.-F.; Lee, R.; Lu, G.; Yin, Y.; Qiao, B. Nat. Commun. 2019, 10, 1774.
(c) Cavedon, C.; Madani, A.; Seeberger, P. H.; Perter, B. Org. Lett. 2019, 21, 5331.
(d) Fabry, D. C.; Zoller, J.; Rueping, M. Org. Chem. Front. 2019, 6, 2635.
(e) DiMeglio, J. L.; Breuhaus Alvarez, J. L.; Li, S. Q.; Bartlett, B. M. ACS Catal. 2019, 9, 5732.
(a) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 1239176.
(b) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
(c) Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Acc. Chem. Res. 2016, 49, 1911.
(a) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102.
(b) Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828.
(c) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 985.
(d) Marzo, L.; Pagire, S. K.; Reiser, O. B. Angew. Chem., Int. Ed. 2018, 57, 10034.
(a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
(b) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
(c) Cherevatskaya, M.; König, B. Russ. Chem. Rev. 2014, 83, 183.
(d) Lang, X.; Chen, X.; Zhao, J. Chem. Soc. Rev. 2014, 43, 473.
(e) Chen, J.; Cen, J.; Xu, X.; Li, X. Catal. Sci. Technol. 2016, 6, 349.
(f) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
(g) Hari, D. P.; Kçnig, B. Chem. Commun. 2014, 50, 6688.
(h) Fukuzumi, S.; Kotani, H.; Ohkubo, K.; Ogo, S.; Tkachenko, N. V.; Lemmetyinen, H. J. Am. Chem. Soc. 2004, 126, 1600.
(i) Ghosh, I.; Ghosh, T.; Bardagi, J. I.; König, B. Science 2014, 346, 725.
(a) Liu, Y.; Zhang, M.; Tung, C.-H.; Wang, Y. ACS Catal. 2016, 6, 8389.
(b) Lang, X.; Ma, W.; Chen, C.; Ji, H.; Zhao, J. Acc. Chem. Res. 2014, 47, 355.
(c) Kisch, H. Angew. Chem., Int. Ed. 2013, 52, 812.
(d) Fox, M. A.; Dulay, M. T. Chem. Rev. 1993, 93, 341.
Lu, Z.; Yoon, T. P. Angew. Chem., Int. Ed. 2012, 51, 10329.
doi: 10.1002/anie.201204835
Brown, R. L.; Klemperer, W. J. Chem. Phys. 1964, 41, 3072.
doi: 10.1063/1.1725680
(a) Meadows, L. F.; Noyes, R. M.; J. Am. Chem. Soc. 1960, 82, 1872.
(b) Olmsted, J.; Karal, G. J. Am. Chem. Soc. 1972, 94, 3305.
(c) Luther, G. W.; Wu, J.; Cullen, J. B. ACS Catal. 1995, 244, 135.
(a) Gopal, P. R.; Prabakar, A. C.; Chandrashekar, E. R. R.; Bhaskar, B. V.; Somaiah, P. V. J. Chin. Chem. Soc. 2013, 60, 639.
(b) Ghosh, N.; Sheldrake, H. M.; Searcey, M. P. K. Curr. Top. Med. Chem. 2009, 9, 1494.
(c) Zechmeister, K.; Brandl, F.; Hoppe, W.; Hecker, E.; Opferkuch, H. J.; Adolf, W. Tetrahedron Lett. 1970, 11, 4075.
(a) Nani, R. R.; Reisman, S. E. J. Am. Chem. Soc. 2013, 135, 7304.
(b) Faust, R. Angew. Chem., Int. Ed. 2000, 39, 2495.
(a) Gopinath, P.; Chandrasekaran, S. J. Org. Chem. 2011, 76, 700.
(b) Korotkov, V. S.; Larionov, O. V.; Hofmeister, A.; Magull, J.; de Meijere, A. J. Org. Chem. 2007, 72, 7504.
(c) Pohlhaus, P. D.; Johnson, J. S. J. Am. Chem. Soc. 2005, 127, 16014.
(a) Zhang, Y.; Qian, R.; Zheng, X.; Zeng, Y.; Sun, J.; Chen, Y.; Ding, A.; Guo, H. Chem. Commun. 2015, 51, 54.
(b) Dao, H. T.; Baran, P. S. Angew. Chem., Int. Ed. 2014, 53, 14382.
(c) Piou, T.; Rovis, T. J. Am. Chem. Soc. 2014, 136, 11292.
(d) Alexakis, A.; Krause, N.; Woodward, S. Copper-Catal. Asymmetric Synth. 2014, 20, 3.
(e) Bartoli, G.; Bencivenni, G.; Dalpozzo, R. Synthesis 2014, 46, 979.
(a) Doyle, M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911.
(b) Ye, T.; McKervey, M. A. Chem. Rev. 1994, 94, 1091.
(c) Doyle, M. P. Chem. Rev. 1986, 86, 919.
(d) Bolsønes, H.; Bonge-Hansen, H.; Bonge-Hansen, T. Synlett 2014, 25, 221.
(e) Nani, R. R.; Reisman, S. E. J. Am. Chem. Soc. 2013, 135, 7304.
(f) Marcoux, D.; Azzi, S.; Charette, A. B. J. Am. Chem. Soc. 2009, 131, 6970.
(g) Pons, A.; Beucher, H.; Ivashkin, P.; Lemonnier, G.; Poisson, T.; Charette, A. B.; Jubault, P.; Pannecoucke, X. Org. Lett. 2015, 17, 1790.
(a) Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1958, 80, 5323.
(b) Taillemaud, S.; Diercxsens, N.; Gagnon, A.; Charette, A. B. Angew. Chem., Int. Ed. 2015, 54, 14108.
Corey, E. J.; Chaykovsky, M. J. Am. Chem. Soc. 1965, 87, 1353.
doi: 10.1021/ja01084a034
Kulinkovich, O. G.; Sviridov, S. V.; Vasilevski, D. A. Synthesis 1991, 234.
(a) Dhakal, R. C.; Dieter, R. K. J. Org. Chem. 2013, 78, 12426.
(b) Ferrary, T.; David, E.; Milanole, G.; Besset, T.; Jubault, P.; Pannecoucke, X. Org. Lett. 2013, 15, 5598.
(c) Aitken, L. S.; Hammond, L. E.; Sundaram, R.; Shankland, K.; Brown, G. D.; Cobb, A. J. A. Chem. Commun. 2015, 51, 13558.
(d) Jiang, K.; Chen, Y. Tetrahedron Lett. 2014, 55, 2049.
Usami, K.; Nagasawa, Y.; Yamaguchi, E.; Tada, N.; Itoh, A. Org. Lett. 2016, 18, 8.
doi: 10.1021/acs.orglett.5b02957
(a) Hoffmann, H. M. R.; Rabe, J. Angew. Chem., Int. Ed. 1985, 24, 94.
(b) Picman, A. K. Biochem. Syst. Ecol. 1986, 14, 255.
(c) Nefkens, G. H. L.; Thuring, J. W. J. F.; Beenakkers, M. F. M.; Zwanenburg, B. J. Agric. Food Chem. 1997, 45, 2273.
(d) Mangnus, E. M.; Zwanenburg, B. J. J. Agric. Food Chem. 1992, 40, 1066.
(e) Fang, B.; Xie, X.; Zhao, C.; Jing, P.; Li, H.; Wang, Z.; Gu, J.; She, X. J. Org. Chem. 2013, 78, 6338.
Selected examples for Bronsted acid mediated cyclization:(a) Nair, V.; Prabhakaran, J.; George, T. G. Tetrahedron 1997, 53, 15061.
(b) Taylor, S. K. Synthesis 1998, 1009.
(c) Ramachandran, P. V.; Krzeminski, M. P.; Reddy, M. V. R.; Brown, H. C. Tetrahedron:Asymmetry 1999, 10, 11.
(d) Sibrian-Vazquez, M.; Spivak, D. A. Synlett 2002, 1105.
(e) Zhao, J.; Burgess, K. Org. Lett. 2009, 11, 2053.
(f) Jha, V.; Kondekar, N. B. Org. Lett. 2010, 12, 2762.
(g) Qabaja, G.; Wilent, J. E.; Benavides, A. R.; Bullard, G. E.; Peterson, K. S. Org. Lett. 2013, 15, 1266.
(h) Wilent, J.; Peterson, K. S. J. Org. Chem. 2014, 79, 2303.
(i) Jha, V.; Kumar, P. RSC Adv. 2014, 4, 3238.
Selected examples for Lewis acid mediated cyclization:(a) Yang, C.-G.; Reich, N. W.; Shi, Z.; He, C. Org. Lett. 2005, 7, 4553.
(b) Yeh, M.-C. P.; Lee, Y.-C.; Young, T.-C. Synthesis 2006, 3621.
(c) Toullec, P. Y.; Genin, E.; Antoniotti, S.; Genet, J.-P.; Michelet, V. Synlett 2008, 707.
(d) Gooßen, L. J.; Ohlmann, D. M.; Dierker, M. Green Chem. 2010, 12, 197.
(e) Valerio, V.; Petkova, D.; Madelaine, C.; Maulide, N. Chem.-Eur. J. 2013, 19, 2606.
(f) Grover, H. K.; Emmett, M. R.; Kerr, M. A. Org. Lett. 2013, 15, 4838.
(g) Shu, X.-Z.; Nguyen, S. C.; He, Y.; Oba, F.; Zhang, Q.; Canlas, C.; Somorjai, G. A.; Alivisatos, A. P.; Toste, F. D. J. Am. Chem. Soc. 2015, 137, 7083.
(h) Zheng, M.; Chen, P.; Huang, L.; Wu, W.; Jiang, H. Org. Lett. 2017, 19, 5756.
Selected examples for oxidative or reductive cyclization:(a) Taylor, S. K.; Chmiel, N. H.; Simons, L. J.; Vyvyan, J. R. J. Org. Chem. 1996, 61, 9084.
(b) Trend, R. M.; Ramtohul, Y. K.; Ferreira, E. M.; Stolts, B. M. Angew. Chem., Int. Ed. 2003, 42, 2892.
(c) Tellitu, I.; Serna, S.; Herrero, M. T.; Moreno, I.; Domínguez, E.; SanMartin, R. J. Org. Chem. 2007, 72, 1526.
(d) Dohi, T.; Takenaga, N.; Goto, A.; Maruyama, A.; Kita, Y. Org. Lett. 2007, 9, 3129.
(e) Shu, C.; Liu, M.-Q.; Sun, Y.-Z.; Ye, L.-W. Org. Lett. 2012, 14, 4958.
(f) Tada, N.; Ishigami, T.; Cui, L.; Ban, K.; Miura, T.; Itoh, A. Tetrahedron Lett. 2013, 54, 256.
(g) Xie, X.; Stahl, S. S. J. Am. Chem. Soc. 2015, 137, 3767.
(h) Duhamel, T.; Muñiz, K. Chem. Commun. 2019, 55, 933.
Selected examples for cyclizative lactonization:(a) Kishida, A.; Nagaoka, H. Tetrahedron Lett. 2008, 49, 6393.
(b) Murphy, S. K.; Dong, V. M. J. Am. Chem. Soc. 2013, 135, 5553.
(c) Zhang, Q.-B.; Ban, Y.-L.; Zhou, D.-G.; Zhou, P.-P.; Wu, L.-Z.; Liu, Q. Org. Lett. 2016, 18, 5256.
(d) Sakai, N.; Horikawa, S.; Ogiwara, Y. RSC Adv. 2016, 6, 81763.
Maejima, S.; Yamaguchi, E.; Itoh, A. ACS Omega 2019, 4, 4856.
doi: 10.1021/acsomega.9b00333
Maejima, S.; Yamaguchi, E.; Itoh, A. J. Org. Chem. 2019, 84, 9519.
doi: 10.1021/acs.joc.9b01081
Takedaa, M.; Maejima, S.; Yamaguchi, E.; Itoh, A. Tetrahedron 2019, 60, 151284.
doi: 10.1016/j.tetlet.2019.151284
For reviews on the reactions of alkynes, see: (a) Zeni, G.; Larock, R. C. Chem. Rev. 2004, 104, 2285.
(b) Muller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795.
(c) Willis, M. C. Chem. Rev. 2010, 110, 725.
(d) Godoi, B.; Schumacher, R. F.; Zeni, G. Chem. Rev. 2011, 111, 2937.
(e) Gilmore, K.; Alabugin, I. V. Chem. Rev. 2011, 111, 6513.
(f) Wille, U. Chem. Rev. 2013, 113, 813.
(g) Salvio, R.; Moliterno, M.; Bella, M. Asian J. Org. Chem. 2014, 3, 340.
(h) Quintero-Duque, S.; Dyballa, K. M.; Fleischer, I. Tetrahedron Lett. 2015, 56, 2634.
(i) Gao, P.; Song, X.-R.; Liu, X.-Y.; Liang, Y.-M. Chem.-Eur. J. 2015, 21, 7648.
(j) Besset, T.; Poisson, T.; Pannecoucke, X. Eur. J. Org. Chem. 2015, 2765.
(k) Hassan, S.; Mueller, T. J. J. Adv. Synth. Catal. 2015, 357, 617.
(l) Fang, G.; Bi, X. Chem. Soc. Rev. 2015, 44, 8124.
For reviews on C≡C cleavage, see: (a) Yorimitsu, H.; Oshima, K. Bull. Chem. Soc. Jpn. 2009, 82, 778.
(b) Murakami, M.; Matsuda, T. Chem. Commun. 2011, 47, 1100.
(c) Assa, C. Synthesis 2011, 3389.
(d) Ruhland, K. Eur. J. Org. Chem. 2012, 2683.
(e) Allpress, C. J.; Berreau, L. M. Coord. Chem. Rev. 2013, 257, 3005.
(f) Chen, F.; Wang, T.; Jiao, N. Chem. Rev. 2014, 114, 8613.
(g) Liu, H.; Feng, M.; Jiang, X. Chem.-Asian. J. 2014, 9, 3360.
(h) Marek, I.; Masarwa, A.; Delaye, P.-O.; Leibeling, M. Angew. Chem., Int. Ed. 2015, 54, 414.
(a) Adams, H.; Guio, L. V. Y.; Morris, M. J.; Spey, S. E. J. Chem. Soc., Dalton Trans. 2002, 2907.
(b) Chamberlin, R. L. M.; Rosenfeld, D. C.; Wolczanski, P. T.; Lobkovsky, E. B. Organometallics 2002, 21, 2724.
(c) Hayashi, N.; Ho, D. M.; Pascaljr, R. A. Tetrahedron Lett. 2000, 41, 4261.
(d) Cairns, G. A.; Carr, N.; Green, M.; Mahon, M. F. Chem. Commun. 1996, 2431
(e) OÏConnor, J. M.; Pu, L. J. Am. Chem. Soc. 1990, 112, 9013.
(f) Moriarty, R. M.; Penmasta, R.; Awasthi, X. A. K.; Prakash, I. J. Org. Chem. 1988, 53, 6124.
(g) Sawaki, Y.; Inoue, H.; Ogata, Y. Bull. Chem. Soc. Jpn. 1983, 56, 1133.
(h) Sullivan, B. P.; Smythe, R. S.; Kober, E. M.; Meyer, T. J. J. Am. Chem. Soc. 1982, 104, 4701.
Dighea, S. U.; Batra, S. Adv. Synth. Catal. 2016, 358, 500.
doi: 10.1002/adsc.201500906
For selected examples, see: (a) Sato, A.; Morishita, T.; Shiraki, T.; Yoshioka, S.; Horikoshi, H.; Kuwano, H.; Hanzawa, H.; Hata, T. J. Org. Chem. 1993, 58, 7632.
(b) Carroll, A. R.; Hyde, E.; Smith, J.; Quinn, R. J.; Guymer, G.; Forster, P. I. J. Org. Chem. 2005, 70, 1096.
(c) O'Connor, S. E.; Maresh, J. J. Nat. Prod. Rep. 2006, 23, 532.
(d) Stempel, E.; Gaich, T. Acc. Chem. Res. 2016, 49, 2390.
For selected reviews and book, see: (a) Culkin, D. A.; Hartwig, J. F. Acc. Chem. Res. 2003, 36, 234.
(b) Johansson, C. C. C.; Colacot, T. J. Angew. Chem., Int. Ed. 2010, 49, 676.
(a) Chatgilialoglu, C.; Ferreri, C.; Ballestri, M.; Curran, D. P. Tetrahedron Lett. 1996, 37, 6387.
(b) Clive, D. L. J.; Paul, C. C.; Wang, Z. J. Org. Chem. 1997, 62, 7028.
(c) Miura, K.; Fujisawa, N.; Saito, H.; Wang, D.; Hosomi, A. Org. Lett. 2001, 3, 2591.
(d) Usugi, S.; Yorimitsu, H.; Oshima, K. Tetrahedron Lett. 2001, 42, 4535.
(e) Yorimitsu, H.; Shinokubo, H.; Matsubara, S.; Oshima, K. J. Org. Chem. 2001, 66, 7776.
(f) Tanaka, S.; Nakamura, T.; Yorimitsu, H.; Oshima, K. Synlett 2002, 569.
(g) Cai, Y.; Roberts, B. P. Tetrahedron Lett. 2003, 44, 4645.
(h) Cai, Y.; Roberts, B. P.; Tocher, D. A.; Barnett, S. A. Org. Biomol. Chem. 2004, 2, 2517.
(i) Takami, K.; Yorimitsu, H.; Oshima, K. Org. Lett. 2004, 6, 4555.
(j) Song, H.-J.; Lim, C. J.; Kim, S. Chem. Commun. 2006, 2893.
(k) Beckwith, A. L. J.; Schiesser, C. H. Org. Biomol. Chem. 2011, 9, 1736.
(l) Klos, M. R.; Kazmaier, U. Eur. J. Org. Chem. 2013, 2013, 1726.
Sudo, Y.; Yamaguchi, E.; Itoh, A. Org. Lett. 2017, 19, 1610.
doi: 10.1021/acs.orglett.7b00428
(a) Cabrele, C.; Reiser, O. J. Org. Chem. 2016, 81, 10109.
(b) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem., Int. Ed. 2012, 51, 8960.
(a) Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893.
(b) Felpin, F. X.; Lebreton, J. Eur. J. Org. Chem. 2003, 3693.
(c) O'Hagan, D. Nat. Prod. Rep. 2000, 17, 435.
(d) Ritchie, T. J.; Macdonald, S. J. F.; Young, R. J.; Pickett, S. D. Drug Discovery Today 2011, 16, 164.
Zhang, H.-W.; Muñiz, K. ACS Catal. 2017, 7, 4122.
doi: 10.1021/acscatal.7b00928
(a) Saikia, I.; Borah, A. J.; Phukan, P. Chem. Rev. 2016, 116, 6837.
(b) Djerassi, C. Chem. Rev. 1948, 43, 271.
(c) Skell, P. S.; Day, J. C. Acc. Chem. Res. 1978, 11, 381.
Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. Chem. Rev. 2016, 116, 2478.
doi: 10.1021/acs.chemrev.5b00484
Breugst, M.; Detmar, E.; vonder Heiden, D. ACS Catal. 2016, 6, 3203.
doi: 10.1021/acscatal.6b00447
Tsuji, N.; Kobayashi, Y.; Takemoto, Y. Chem. Commun. 2014, 50, 13691.
doi: 10.1039/C4CC06014H
(a) Svensson, P. H.; Kloo, L. Chem. Rev. 2003, 103, 16494.
(b) de Violet, P. F. Rev. Chem. Intermed. 1981, 4, 121.
(a) Yamada, K.; Kato, T.; Hirata, Y. J. Chem. Soc., Chem. Commun. 1969, 1479.
(b). Tada, N.; Cui, L.; Ishigami, T.; Ban, K.; Miura, T.; Itoh, A. Green Chem. 2012, 14, 3007.
(c) Hou, R.-S.; Wang, H.-M.; Lin, Y.-C.; Chen, L.-C. J. Chin. Chem. Soc. 2005, 52, 1029.
(d) Hou, R.-S.; Wang, H.-M.; Lin, Y.-C.; Chen, L.-C. Heterocycles 2005, 65, 649.
(e) Uyanik, M.; Yasui, T.; Ishihara, K. Bioorg. Med. Chem. Lett. 2009, 19, 3848.
(f) Shah, A. A.; Khan, Z. A.; Choudhary, N.; Loholter, C.; Schafer, S.; Marie, G. P. L.; Farooq, U.; Witulski, B.; Wirth, T. Org. Lett. 2009, 11, 3578.
(g) Farooq, U.; Schafer, S.; Shah, A. A.; Freudendahl, D. M.; Wirth, T. Synthesis 2010, 1023.
(h) Uyanik, M.; Suzuki, D.; Yasui, T.; Ishihara, K. Angew. Chem., Int. Ed. 2011, 50, 5331.
(i) Uyanik, M.; Ishihara, K. ChemCatChem 2012, 4, 177.
Tada, N.; Ishigami, T.; Cui, L.; Ban, K.; Miura, T.; Itoh, A. Tetrahedron Lett. 2013, 54, 256.
doi: 10.1016/j.tetlet.2012.11.014
Selvam, T. P.; Kumar, P. V. Res. Pharm. 2011, 1, 1.
(a) Gundla, R.; Kazemi, R.; Sanam, R.; Muttineni, R.; Sarma, J. A. R. P.; Dayam, R.; Neamati, N. J. Med. Chem. 2008, 51, 3367.
(b) Mendes da Silva, J. F.; Walters, M.; Al-Damluji, S.; Ganellin, C. R. Bioorg. Med. Chem. 2008, 16, 7254.
(a) Wendlandt A. E.; Stahl, S. S. J. Am. Chem. Soc. 2014, 136, 506.
(b) Chen, Z.; Chen, J.; Liu, M.; Ding, J.; Gao, W.; Huang, X.; Wu, H. J. Org. Chem. 2013, 78, 11342.
(c) Vlaar, T.; Cioc, R. C.; Mampuys, P.; Maes, B. U. W.; Orru, R. V. A.; Ruijter, E. Angew. Chem., Int. Ed. 2012, 51, 13058.
(d) Rachakonda, S.; Pratap, P. S.; Rao, M. V. B. Synthesis 2012, 44, 2065.
(e) Yan, Y.; Wang, Z. Chem. Commun. 2011, 47, 9513.
(f) Han, B.; Wang, C.; Han, R.-F.; Yu, W.; Duan, X.-Y.; Fang, R.; Yang, X.-L. Chem. Commun. 2011, 47, 7818.
(g) Karnakar, K.; Shankar, J.; Murthy, S. N.; Ramesh, K.; Nageswar, Y. V. D. Synlett 2011, 1089.
(h) Zhang, J.; Yu, C.; Wang, S.; Wan, C.; Wang, Z. Chem. Coommun. 2010, 46, 5244.
(i) Zhang, J.; Yu, C.; Wang, S.; Wan, C.; Wang, Z. Org. Lett. 2010, 12, 2841.
(j) Portela-Cubillo, F.; Scott, J. S.; Walton, J. C. J. Org. Chem. 2009, 74, 4934.
(k) Portela-Cubillo, F.; Scott, J. S.; Walton, J. C. Chem. Commun. 2008, 2935.
(l) Ferrini, S.; Ponticelli, F.; Taddei, M. Org. Lett. 2007, 9, 69.
Han, B.; Yang, X.-L.; Wang, C.; Bai, Y.-W.; Pan, T.-C.; Chen, X.; Yu, W. J. Org. Chem. 2012, 77, 1136.
doi: 10.1021/jo2020399
Fang, J.; Zhou, J.; Fang, Z. RSC Adv. 2013, 3, 334.
doi: 10.1039/C2RA22278G
Maheswari, C. U.; Kumar, G. S.; Venkateshwar, M.; Kumar, R. A.; Kantam, M. L.; Reddy, K. R. Adv. Synth. Catal. 2010, 352, 341.
doi: 10.1002/adsc.200900715
Vanden Eynde, J. J.; Godin, J.; Mayence, A.; Maquestiau, A.; Anders, E. Synthesis 1993, 867.
Peng, Y.; Zeng, Y.; Qiu, G.; Cai, L.; Pike, V. W. J. Heterocycl. Chem. 2010, 47, 1240.
doi: 10.1002/jhet.444
Yamaguchi, T.; Sakairi, K.; Yamaguchi, E.; Tada, N.; Itoh, A. RSC Adv. 2016, 6, 56892.
doi: 10.1039/C6RA04073J
Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257.
doi: 10.1021/jm501100b
(a) Minisci, F.; Galli, R.; Cecere, M.; Malatesta, V.; Caronna, T. Tetrahedron Lett. 1968, 9, 5609.
(b) Minisci, F.; Vismara, E.; Fontana, F. Heterocycles 1989, 28, 489.
(c) Minisci, F.; Fontana, F.; Vismara, E. J. Heterocycl. Chem. 1990, 27, 79.
Fu, M.-C.; Shang, R.; Zhao, B.; Wang, B.; Fu, Y. Science 2019, 363, 1429.
doi: 10.1126/science.aav3200
Fu, Y.; Liu, L.; Yu, H.-Z.; Wang, Y.-M.; Guo, Q.-X. J. Am. Chem. Soc. 2005, 127, 7227.
doi: 10.1021/ja0421856
Noble, A.; Aggarwal, V. K. Sci. China:Chem. 2019, 62, 1083.
doi: 10.1007/s11426-019-9489-4
(a) Stang, P. J.; Zhdankin, V. V. Chem. Rev. 1996, 96, 1123.
(b) Zhdankin, V. V. Curr. Org. Synth. 2005, 2, 121.
(c) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299.
(d) Wu, S. W.; Liu, J. L.; Liu, F. Org. Lett. 2016, 18, 1.
For selected reviews and papers: (a) Trost, B. M.; Brennan, M. K. Synthesis 2009, 3003.
(b) Singh, G. S.; Desta, Z. Y. Chem. Rev. 2012, 132, 6104.
(c) Dalpozzo, R.; Bartoli, G.; Bencivenni, G. Chem. Soc. Rev. 2012, 41, 7247.
(d) Song, R.-J.; Liu, Y.; Xie, Y.-X.; Li, J.-H. Synthesis 2015, 47, 1195.
For selected examples: (a) Galliford, C. V.; Scheidt, K. A. Angew. Chem., Int. Ed. 2007, 46, 8748.
(b) Jia, Y.-X.; Kündig, E. P. Angew. Chem., Int. Ed. 2009, 48, 1636.
(c) Piou, T.; Neuville, L.; Zhu, J. Angew. Chem., Int. Ed. 2012, 51, 11561.
For selected reviews: (a) Kolb, H. C.; Nieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483.
(b) Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S. Chem. Rev. 2007, 107, 5318.
(c) Muňiz, K. Angew. Chem., Int. Ed. 2009, 48, 9412.
(d) McDonald, R. I.; Liu, G.; Stahl, S. S. Chem. Rev. 2011, 111, 2981.
(e) Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3464.
(f) Chen, J.-R.; Yu, X.-Y.; Xiao, W.-J. Synthesis 2015, 47, 604.
Ji, W.-Q.; Tan, H.; Wang, M.; Li, P.-H.; Wang, L. Chem. Commun. 2016, 52, 1462.
doi: 10.1039/C5CC08253F
Seoud, O. A.; Ferreira, M.; Rodrigues, W. A.; Ruasse, M. F. J. Phys. Org. Chem. 2005, 18, 173.
doi: 10.1002/poc.864
(a) Ochiai, M.; Ito, T.; Takahashi, H.; Nakanishi, A.; Toyonari, M.; Sueda, T.; Goto, S.; Shiro, M. J. Am. Chem. Soc. 1996, 118, 7716.
(b) Do, H.-Q.; Kashif Khan, R. M.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 15185.
(c) Moteki, S. A.; Usui, A.; Selvakumar, S.; Zhang, T.; Maruoka, K. Angew. Chem., Int. Ed. 2014, 53, 11060.
(a) Li, H.; Li, P.; Tan, H.; Wang, L. Chem.-Eur. J. 2013, 19, 14432.
(b) Chen, L.; Li, H.; Yu, F.; Wang, L. Chem. Commun. 2014, 50, 14866.
(a) Xie, J.; Xu, P.; Li, H.; Xue, Q.; Jin, H.; Cheng, Y.; Zhu, C. Chem. Commun. 2013, 49, 5672.
(b) Tan, H.; Li, H.; Ji, W.; Wang, L. Angew. Chem., Int. Ed. 2015, 54, 8374.
(a) Murakami, A.; Gao, G.; Omura, M.; Yano, M.; Ito, C.; Furukawa, H.; Takahashi, D.; Koshimizu, K.; Ohigashi, H. Bioorg. Med. Chem. Lett. 2000, 10, 59.
(b) Wang, C. J.; Hsieh, Y. J.; Chu, C. Y.; Lin, Y. Y.; Tseng, T. H. Cancer Lett. 2002, 183, 163.
(c) Zhao, Y.; Zheng, Q.; Dakin, K.; Xu, K.; Martinez, M. L.; Li, W. H. J. Am. Chem. Soc. 2004, 126, 4653.
(d) Borges, F.; Roleira, F.; Milhazes, N.; Santana, L.; Uriarte, E. Curr. Med. Chem. 2005, 12, 887.
(e) Signore, G.; Nifosi, R.; Albertazzi, L.; Storti, B.; Bizzarri, R. J. Am. Chem. Soc. 2010, 132, 1276.
(f) Wang, C.; Wu, C.; Zhu, J.; Miller, R. H.; Wang, Y. J. Med. Chem. 2011, 54, 2331.
(g) Sashidhara, K. V.; Kumar, A.; Chatterjee, M.; Rao, K. B.; Singh, S.; Verma, A. K.; Palit, G. Bioorg. Med. Chem. Lett. 2011, 21, 1937.
(h) Peng, X.; Damu, G.; Zhou, C. Curr. Pharm. Des. 2013, 19, 3884.
(i) Sandhu, S.; Bansal, Y.; Silakari, O.; Bansal, G. Bioorg. Med. Chem. 2014, 22, 3806.
(a) Harayama, T.; Katsuno, K.; Nishiok, H.; Fujii, M.; Nishita, Y.; Ishii, H.; Kaneko, Y. Heterocycles 1994, 39, 613.
(b) Kadnikov, D. V.; Larock, R. C. Org. Lett. 2000, 2, 3643.
(c) Kabalka, G. W.; Dong, G.; Venkataiah, B. Tetrahedron Lett. 2004, 45, 5139.
(d) Oyamada, J.; Kitamura, T. Tetrahedron 2006, 62, 6918.
(e) Surya, P. R. H.; Sivakumar, S. J. Org. Chem. 2006, 71, 8715.
(f) Zhang, L.; Meng, T.; Fan, R.; Wu, J. J. Org. Chem. 2007, 72, 7279.
(g) Yuan, H.-J.; Wang, M.; Liu, Y.-J.; Liu, Q. Adv. Synth. Catal. 2009, 351, 112.
(h) Yuan, H.; Wang, M.; Liu, Y.; Wang, L.; Liu, J.; Liu, Q. Chem.-Eur. J. 2010, 16, 13450.
(i) Raju, B.-C.; Tiwari, A.-K.; Kumar, J.-K.; Ali, A.-Z.; Agawane, S.-B.; Saidachary, G.; Madhusudana, K. Bioorg. Med. Chem. 2010, 18, 358.
(j) Fernandes, T. A.; GontijoVaz, B.; Eberlin, M. N.; Silva, A. J. M.; Costa, P. R. R. J. Org. Chem. 2010, 75, 7085.
(k) Yan, K.; Yang, D.; Wei, W.; Wang, F.; Shuai, Y.; Li, Q.; Wang, H. J. Org. Chem. 2015, 80, 1550.
Yang, S.; Tan, H.; Ji, W.-Q.; Zhang, X.-B.; Li, P.-H.; Wang, L. Adv. Synth. Catal. 2017, 359, 1.
doi: 10.1002/adsc.201601440
Huang, H.; Zhang, G.; Chen, Y. Angew. Chem., Int. Ed. 2015, 54, 7872.
doi: 10.1002/anie.201502369
(a) Matcha, K.; Narayan, R.; Antonchick, A. P. Angew. Chem., Int. Ed. 2013, 52, 7985.
(b) Do, H.-Q.; Kashif Khan, R. M.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 15185.
(c) Moteki, S. A.; Usui, A.; Selvakumar, S.; Zhang, T.; Maruoka, K. Angew. Chem., Int. Ed. 2014, 53, 11060.
(a) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529.
(b) Carlo, B.; Donna, M. H.; Amos, B. S. Chem. Med. Chem. 2013, 8, 385.
(c) Ballatore, C.; Soper, J. H.; Piscitelli, F.; James, M.; Huang, L.; Atasoylu, O.; Huryn, D. M.; Trojanowski, J. Q.; Lee, V. M.; Brunden, K. R.; Smith, A. B. J. Med. Chem. 2011, 54, 6969.
(d) Malwal, S. R.; Sriram, D.; Yogeeswari, P.; Konkimalla, V. B.; Chakrapani, H. J. Med. Chem. 2012, 55, 553.
(e) Feng, M.; Tang, B.; Liang, S. H.; Jiang, X. Curr. Top. Med. Chem. 2016, 16, 1200.
(f) Adhikari, N.; Mukherjee, A.; Saha, A.; Jha, T. Eur. J. Med. Chem. 2017, 129, 72.
(a) Wynne, J. H.; Price, S. E.; Rorer, J. R.; Stalick, W. M. Synth. Commun. 2003, 33, 341.
(b) Khalafi-Nezhad, A.; Parhami, A.; Zare, A.; Shirazi, A. N.; Zare, A. R. M.; Hassaninejad, A. Can. J. Chem. 2008, 86, 456.
(c) Wu, X.-F.; Vovard-Le Bray, C.; Bechki, L.; Darcel, C. Tetrahedron 2009, 65, 7380.
(d) Chang, J. W. W.; Ton, T. M. U.; Tania, S.; Taylor, P. C.; Chan, P. W. H. Chem. Commun. 2010, 46, 922.
(e) Chawla, R.; Singh, A. K.; Yadav, L. D. S. Tetrahedron Lett. 2014, 55, 3553.
(f) Morales, S.; Guijarro, F. G.; Garcia Ruano, J. L.; Cid, M. B. J. Am. Chem. Soc. 2014, 136, 1082.
(g) Reeves, J. T.; Visco, M. D.; Marsini, M. A.; Grinberg, N.; Busacca, C.A.; Mattson, A. E.; Senanayake, C. H. Org. Lett. 2015, 17, 2442.
(h) Sharghi, H.; Hosseini-Sarvari, M.; Ebrahimpourmoghaddam, S. ARKIVOC 2007, xv, 255.
(a) Sisko, J.; Weinreb, S. M. J. Org. Chem. 1990, 55, 393.
(b) Trost, B. M.; Marrs, C. J. Org. Chem. 1991, 56, 6468.
(c) Huang, D.; Wang, X.; Wang, X.; Chen, W.; Wang, X.; Hu, Y. Org. Lett. 2016, 18, 604.
(a) Hopkins, M. D.; Scott, K. A.; DeMier, B. C.; Morgan, H. R.; Macgruder, J. A.; Lamar, A. A. Org. Biomol. Chem. 2017, 15, 9209.
(b) Zard, S. Z. Chem. Soc. Rev. 2008, 37, 1603.
(c) Höfling, S. B.; Heinrich, M. R. Synthesis 2011, 173.
(d) Chen, J. R.; Hu, X. Q.; Lu, L. Q.; Xiao, W. J. Chem. Soc. Rev. 2016, 45, 2044.
(e) Achar, T. K.; Mal, P. J. Org. Chem. 2015, 80, 666.
(f) Jin, L. M.; Lu, H.; Cui, Y.; Lizardi, C. L.; Arzua, T. N.; Wojtas, L.; Cui, X.; Zhang, X. P. Chem. Sci. 2014, 5, 2422.
(g) Liu, Z.; Zhang, J.; Chen, S.; Shi, E.; Xu, Y.; Wan, X. Angew. Chem. 2012, 51, 3231.
Hopkins, M. D.; Brandeburg, Z. C.; Hanson A. J.; Lamar, A. A. Molecules 2018, 23, 1838.
doi: 10.3390/molecules23081838
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
Meijin Li , Xirong Fu , Xue Zheng , Yuhan Liu , Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
Jiajia Li , Xiangyu Zhang , Zhihan Yuan , Zhengyang Qian , Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073
Jie Li , Huida Qian , Deyang Pan , Wenjing Wang , Daliang Zhu , Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
Zijian Zhao , Yanxin Shi , Shicheng Li , Wenhong Ruan , Fang Zhu , Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Hui Shi , Shuangyan Huan , Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036
Qin Hou , Jiayi Hou , Aiju Shi , Xingliang Xu , Yuanhong Zhang , Yijing Li , Juying Hou , Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056
Sub=substrate, RQ=reductive quencher, OQ=oxidative quencher