Citation: Liu Yang, Lin Liqing, Han Yinghui, Liu Yingjie. Application of Iodine and Iodide in Photocatalysis Organic Synthesis[J]. Chinese Journal of Organic Chemistry, ;2020, 40(12): 4216-4227. doi: 10.6023/cjoc202004053 shu

Application of Iodine and Iodide in Photocatalysis Organic Synthesis

  • Corresponding author: Liu Yang, 348596994@qq.com Liu Yingjie, liuyj691@nenu.edu.cn
  • Received Date: 30 April 2020
    Revised Date: 10 June 2020
    Available Online: 24 June 2020

    Fund Project: the Young Innovative Talents of Harbin University of Commerce 2016QN056the Harbin Business University Youth Reserve Talent Project 2019CX36the Excellent Youth Project of Heilongjiang Natural Science Foundation YQ2019B004Project supported by the Excellent Youth Project of Heilongjiang Natural Science Foundation (No. YQ2019B004), the Young Innovative Talents of Harbin University of Commerce (No. 2016QN056) and the Harbin Business University Youth Reserve Talent Project (No. 2019CX36)

Figures(13)

  • Photoredox catalysis has become a universal tool to catalyze a wide variety of chemical reactions with high selectivity under mild conditions. However, traditional photocatalysis relies heavily on photocatalysts with the problems such as high price and environmental pollution. Because iodine and iodide have the advantages of cheap, non-toxic and unique photoreactivity, their application in photochemical synthesis has attracted more and more attention in recent years. The research progress of photo-redox catalysis reactions mediated by iodine and iodide in recent years is summarized, and their future outlook is also discussed.
  • 加载中
    1. [1]

      Hu, A.-Z.; Tang, C.-Q. J. Funct. Mater. 2001, 32, 586(in Chinese).  doi: 10.3321/j.issn:1001-9731.2001.06.008

    2. [2]

      (a) Liu, Y.-Y.; Liang, D.; Lu, L.-Q.; Xiao, W.-J. Chem. Commun. 2019, 55, 4853.
      (b) Li, F.-Y.; Tian, D.; Fan, Y.-F.; Lee, R.; Lu, G.; Yin, Y.; Qiao, B. Nat. Commun. 2019, 10, 1774.
      (c) Cavedon, C.; Madani, A.; Seeberger, P. H.; Perter, B. Org. Lett. 2019, 21, 5331.
      (d) Fabry, D. C.; Zoller, J.; Rueping, M. Org. Chem. Front. 2019, 6, 2635.
      (e) DiMeglio, J. L.; Breuhaus Alvarez, J. L.; Li, S. Q.; Bartlett, B. M. ACS Catal. 2019, 9, 5732.

    3. [3]

      (a) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 1239176.
      (b) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
      (c) Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Acc. Chem. Res. 2016, 49, 1911.

    4. [4]

      (a) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102.
      (b) Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828.
      (c) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 985.
      (d) Marzo, L.; Pagire, S. K.; Reiser, O. B. Angew. Chem., Int. Ed. 2018, 57, 10034.

    5. [5]

      (a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
      (b) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
      (c) Cherevatskaya, M.; König, B. Russ. Chem. Rev. 2014, 83, 183.
      (d) Lang, X.; Chen, X.; Zhao, J. Chem. Soc. Rev. 2014, 43, 473.
      (e) Chen, J.; Cen, J.; Xu, X.; Li, X. Catal. Sci. Technol. 2016, 6, 349.
      (f) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
      (g) Hari, D. P.; Kçnig, B. Chem. Commun. 2014, 50, 6688.
      (h) Fukuzumi, S.; Kotani, H.; Ohkubo, K.; Ogo, S.; Tkachenko, N. V.; Lemmetyinen, H. J. Am. Chem. Soc. 2004, 126, 1600.
      (i) Ghosh, I.; Ghosh, T.; Bardagi, J. I.; König, B. Science 2014, 346, 725.

    6. [6]

      (a) Liu, Y.; Zhang, M.; Tung, C.-H.; Wang, Y. ACS Catal. 2016, 6, 8389.
      (b) Lang, X.; Ma, W.; Chen, C.; Ji, H.; Zhao, J. Acc. Chem. Res. 2014, 47, 355.
      (c) Kisch, H. Angew. Chem., Int. Ed. 2013, 52, 812.
      (d) Fox, M. A.; Dulay, M. T. Chem. Rev. 1993, 93, 341.

    7. [7]

      Lu, Z.; Yoon, T. P. Angew. Chem., Int. Ed. 2012, 51, 10329.  doi: 10.1002/anie.201204835

    8. [8]

    9. [9]

      Brown, R. L.; Klemperer, W. J. Chem. Phys. 1964, 41, 3072.  doi: 10.1063/1.1725680

    10. [10]

      (a) Meadows, L. F.; Noyes, R. M.; J. Am. Chem. Soc. 1960, 82, 1872.
      (b) Olmsted, J.; Karal, G. J. Am. Chem. Soc. 1972, 94, 3305.
      (c) Luther, G. W.; Wu, J.; Cullen, J. B. ACS Catal. 1995, 244, 135.

    11. [11]

      (a) Gopal, P. R.; Prabakar, A. C.; Chandrashekar, E. R. R.; Bhaskar, B. V.; Somaiah, P. V. J. Chin. Chem. Soc. 2013, 60, 639.
      (b) Ghosh, N.; Sheldrake, H. M.; Searcey, M. P. K. Curr. Top. Med. Chem. 2009, 9, 1494.
      (c) Zechmeister, K.; Brandl, F.; Hoppe, W.; Hecker, E.; Opferkuch, H. J.; Adolf, W. Tetrahedron Lett. 1970, 11, 4075.

    12. [12]

      (a) Nani, R. R.; Reisman, S. E. J. Am. Chem. Soc. 2013, 135, 7304.
      (b) Faust, R. Angew. Chem., Int. Ed. 2000, 39, 2495.

    13. [13]

      (a) Gopinath, P.; Chandrasekaran, S. J. Org. Chem. 2011, 76, 700.
      (b) Korotkov, V. S.; Larionov, O. V.; Hofmeister, A.; Magull, J.; de Meijere, A. J. Org. Chem. 2007, 72, 7504.
      (c) Pohlhaus, P. D.; Johnson, J. S. J. Am. Chem. Soc. 2005, 127, 16014.

    14. [14]

      (a) Zhang, Y.; Qian, R.; Zheng, X.; Zeng, Y.; Sun, J.; Chen, Y.; Ding, A.; Guo, H. Chem. Commun. 2015, 51, 54.
      (b) Dao, H. T.; Baran, P. S. Angew. Chem., Int. Ed. 2014, 53, 14382.
      (c) Piou, T.; Rovis, T. J. Am. Chem. Soc. 2014, 136, 11292.
      (d) Alexakis, A.; Krause, N.; Woodward, S. Copper-Catal. Asymmetric Synth. 2014, 20, 3.
      (e) Bartoli, G.; Bencivenni, G.; Dalpozzo, R. Synthesis 2014, 46, 979.

    15. [15]

      (a) Doyle, M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911.
      (b) Ye, T.; McKervey, M. A. Chem. Rev. 1994, 94, 1091.
      (c) Doyle, M. P. Chem. Rev. 1986, 86, 919.
      (d) Bolsønes, H.; Bonge-Hansen, H.; Bonge-Hansen, T. Synlett 2014, 25, 221.
      (e) Nani, R. R.; Reisman, S. E. J. Am. Chem. Soc. 2013, 135, 7304.
      (f) Marcoux, D.; Azzi, S.; Charette, A. B. J. Am. Chem. Soc. 2009, 131, 6970.
      (g) Pons, A.; Beucher, H.; Ivashkin, P.; Lemonnier, G.; Poisson, T.; Charette, A. B.; Jubault, P.; Pannecoucke, X. Org. Lett. 2015, 17, 1790.

    16. [16]

      (a) Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1958, 80, 5323.
      (b) Taillemaud, S.; Diercxsens, N.; Gagnon, A.; Charette, A. B. Angew. Chem., Int. Ed. 2015, 54, 14108.

    17. [17]

      Corey, E. J.; Chaykovsky, M. J. Am. Chem. Soc. 1965, 87, 1353.  doi: 10.1021/ja01084a034

    18. [18]

      Kulinkovich, O. G.; Sviridov, S. V.; Vasilevski, D. A. Synthesis 1991, 234.

    19. [19]

      (a) Dhakal, R. C.; Dieter, R. K. J. Org. Chem. 2013, 78, 12426.
      (b) Ferrary, T.; David, E.; Milanole, G.; Besset, T.; Jubault, P.; Pannecoucke, X. Org. Lett. 2013, 15, 5598.
      (c) Aitken, L. S.; Hammond, L. E.; Sundaram, R.; Shankland, K.; Brown, G. D.; Cobb, A. J. A. Chem. Commun. 2015, 51, 13558.
      (d) Jiang, K.; Chen, Y. Tetrahedron Lett. 2014, 55, 2049.

    20. [20]

      Usami, K.; Nagasawa, Y.; Yamaguchi, E.; Tada, N.; Itoh, A. Org. Lett. 2016, 18, 8.  doi: 10.1021/acs.orglett.5b02957

    21. [21]

      (a) Hoffmann, H. M. R.; Rabe, J. Angew. Chem., Int. Ed. 1985, 24, 94.
      (b) Picman, A. K. Biochem. Syst. Ecol. 1986, 14, 255.
      (c) Nefkens, G. H. L.; Thuring, J. W. J. F.; Beenakkers, M. F. M.; Zwanenburg, B. J. Agric. Food Chem. 1997, 45, 2273.
      (d) Mangnus, E. M.; Zwanenburg, B. J. J. Agric. Food Chem. 1992, 40, 1066.
      (e) Fang, B.; Xie, X.; Zhao, C.; Jing, P.; Li, H.; Wang, Z.; Gu, J.; She, X. J. Org. Chem. 2013, 78, 6338.

    22. [22]

      Selected examples for Bronsted acid mediated cyclization:(a) Nair, V.; Prabhakaran, J.; George, T. G. Tetrahedron 1997, 53, 15061.
      (b) Taylor, S. K. Synthesis 1998, 1009.
      (c) Ramachandran, P. V.; Krzeminski, M. P.; Reddy, M. V. R.; Brown, H. C. Tetrahedron:Asymmetry 1999, 10, 11.
      (d) Sibrian-Vazquez, M.; Spivak, D. A. Synlett 2002, 1105.
      (e) Zhao, J.; Burgess, K. Org. Lett. 2009, 11, 2053.
      (f) Jha, V.; Kondekar, N. B. Org. Lett. 2010, 12, 2762.
      (g) Qabaja, G.; Wilent, J. E.; Benavides, A. R.; Bullard, G. E.; Peterson, K. S. Org. Lett. 2013, 15, 1266.
      (h) Wilent, J.; Peterson, K. S. J. Org. Chem. 2014, 79, 2303.
      (i) Jha, V.; Kumar, P. RSC Adv. 2014, 4, 3238.

    23. [23]

      Selected examples for Lewis acid mediated cyclization:(a) Yang, C.-G.; Reich, N. W.; Shi, Z.; He, C. Org. Lett. 2005, 7, 4553.
      (b) Yeh, M.-C. P.; Lee, Y.-C.; Young, T.-C. Synthesis 2006, 3621.
      (c) Toullec, P. Y.; Genin, E.; Antoniotti, S.; Genet, J.-P.; Michelet, V. Synlett 2008, 707.
      (d) Gooßen, L. J.; Ohlmann, D. M.; Dierker, M. Green Chem. 2010, 12, 197.
      (e) Valerio, V.; Petkova, D.; Madelaine, C.; Maulide, N. Chem.-Eur. J. 2013, 19, 2606.
      (f) Grover, H. K.; Emmett, M. R.; Kerr, M. A. Org. Lett. 2013, 15, 4838.
      (g) Shu, X.-Z.; Nguyen, S. C.; He, Y.; Oba, F.; Zhang, Q.; Canlas, C.; Somorjai, G. A.; Alivisatos, A. P.; Toste, F. D. J. Am. Chem. Soc. 2015, 137, 7083.
      (h) Zheng, M.; Chen, P.; Huang, L.; Wu, W.; Jiang, H. Org. Lett. 2017, 19, 5756.

    24. [24]

      Selected examples for oxidative or reductive cyclization:(a) Taylor, S. K.; Chmiel, N. H.; Simons, L. J.; Vyvyan, J. R. J. Org. Chem. 1996, 61, 9084.
      (b) Trend, R. M.; Ramtohul, Y. K.; Ferreira, E. M.; Stolts, B. M. Angew. Chem., Int. Ed. 2003, 42, 2892.
      (c) Tellitu, I.; Serna, S.; Herrero, M. T.; Moreno, I.; Domínguez, E.; SanMartin, R. J. Org. Chem. 2007, 72, 1526.
      (d) Dohi, T.; Takenaga, N.; Goto, A.; Maruyama, A.; Kita, Y. Org. Lett. 2007, 9, 3129.
      (e) Shu, C.; Liu, M.-Q.; Sun, Y.-Z.; Ye, L.-W. Org. Lett. 2012, 14, 4958.
      (f) Tada, N.; Ishigami, T.; Cui, L.; Ban, K.; Miura, T.; Itoh, A. Tetrahedron Lett. 2013, 54, 256.
      (g) Xie, X.; Stahl, S. S. J. Am. Chem. Soc. 2015, 137, 3767.
      (h) Duhamel, T.; Muñiz, K. Chem. Commun. 2019, 55, 933.

    25. [25]

      Selected examples for cyclizative lactonization:(a) Kishida, A.; Nagaoka, H. Tetrahedron Lett. 2008, 49, 6393.
      (b) Murphy, S. K.; Dong, V. M. J. Am. Chem. Soc. 2013, 135, 5553.
      (c) Zhang, Q.-B.; Ban, Y.-L.; Zhou, D.-G.; Zhou, P.-P.; Wu, L.-Z.; Liu, Q. Org. Lett. 2016, 18, 5256.
      (d) Sakai, N.; Horikawa, S.; Ogiwara, Y. RSC Adv. 2016, 6, 81763.

    26. [26]

      Maejima, S.; Yamaguchi, E.; Itoh, A. ACS Omega 2019, 4, 4856.  doi: 10.1021/acsomega.9b00333

    27. [27]

      Maejima, S.; Yamaguchi, E.; Itoh, A. J. Org. Chem. 2019, 84, 9519.  doi: 10.1021/acs.joc.9b01081

    28. [28]

      Takedaa, M.; Maejima, S.; Yamaguchi, E.; Itoh, A. Tetrahedron 2019, 60, 151284.  doi: 10.1016/j.tetlet.2019.151284

    29. [29]

      For reviews on the reactions of alkynes, see: (a) Zeni, G.; Larock, R. C. Chem. Rev. 2004, 104, 2285.
      (b) Muller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795.
      (c) Willis, M. C. Chem. Rev. 2010, 110, 725.
      (d) Godoi, B.; Schumacher, R. F.; Zeni, G. Chem. Rev. 2011, 111, 2937.
      (e) Gilmore, K.; Alabugin, I. V. Chem. Rev. 2011, 111, 6513.
      (f) Wille, U. Chem. Rev. 2013, 113, 813.
      (g) Salvio, R.; Moliterno, M.; Bella, M. Asian J. Org. Chem. 2014, 3, 340.
      (h) Quintero-Duque, S.; Dyballa, K. M.; Fleischer, I. Tetrahedron Lett. 2015, 56, 2634.
      (i) Gao, P.; Song, X.-R.; Liu, X.-Y.; Liang, Y.-M. Chem.-Eur. J. 2015, 21, 7648.
      (j) Besset, T.; Poisson, T.; Pannecoucke, X. Eur. J. Org. Chem. 2015, 2765.
      (k) Hassan, S.; Mueller, T. J. J. Adv. Synth. Catal. 2015, 357, 617.
      (l) Fang, G.; Bi, X. Chem. Soc. Rev. 2015, 44, 8124.

    30. [30]

      For reviews on C≡C cleavage, see: (a) Yorimitsu, H.; Oshima, K. Bull. Chem. Soc. Jpn. 2009, 82, 778.
      (b) Murakami, M.; Matsuda, T. Chem. Commun. 2011, 47, 1100.
      (c) Assa, C. Synthesis 2011, 3389.
      (d) Ruhland, K. Eur. J. Org. Chem. 2012, 2683.
      (e) Allpress, C. J.; Berreau, L. M. Coord. Chem. Rev. 2013, 257, 3005.
      (f) Chen, F.; Wang, T.; Jiao, N. Chem. Rev. 2014, 114, 8613.
      (g) Liu, H.; Feng, M.; Jiang, X. Chem.-Asian. J. 2014, 9, 3360.
      (h) Marek, I.; Masarwa, A.; Delaye, P.-O.; Leibeling, M. Angew. Chem., Int. Ed. 2015, 54, 414.

    31. [31]

      (a) Adams, H.; Guio, L. V. Y.; Morris, M. J.; Spey, S. E. J. Chem. Soc., Dalton Trans. 2002, 2907.
      (b) Chamberlin, R. L. M.; Rosenfeld, D. C.; Wolczanski, P. T.; Lobkovsky, E. B. Organometallics 2002, 21, 2724.
      (c) Hayashi, N.; Ho, D. M.; Pascaljr, R. A. Tetrahedron Lett. 2000, 41, 4261.
      (d) Cairns, G. A.; Carr, N.; Green, M.; Mahon, M. F. Chem. Commun. 1996, 2431
      (e) OÏConnor, J. M.; Pu, L. J. Am. Chem. Soc. 1990, 112, 9013.
      (f) Moriarty, R. M.; Penmasta, R.; Awasthi, X. A. K.; Prakash, I. J. Org. Chem. 1988, 53, 6124.
      (g) Sawaki, Y.; Inoue, H.; Ogata, Y. Bull. Chem. Soc. Jpn. 1983, 56, 1133.
      (h) Sullivan, B. P.; Smythe, R. S.; Kober, E. M.; Meyer, T. J. J. Am. Chem. Soc. 1982, 104, 4701.

    32. [32]

      Dighea, S. U.; Batra, S. Adv. Synth. Catal. 2016, 358, 500.  doi: 10.1002/adsc.201500906

    33. [33]

      For selected examples, see: (a) Sato, A.; Morishita, T.; Shiraki, T.; Yoshioka, S.; Horikoshi, H.; Kuwano, H.; Hanzawa, H.; Hata, T. J. Org. Chem. 1993, 58, 7632.
      (b) Carroll, A. R.; Hyde, E.; Smith, J.; Quinn, R. J.; Guymer, G.; Forster, P. I. J. Org. Chem. 2005, 70, 1096.
      (c) O'Connor, S. E.; Maresh, J. J. Nat. Prod. Rep. 2006, 23, 532.
      (d) Stempel, E.; Gaich, T. Acc. Chem. Res. 2016, 49, 2390.

    34. [34]

      For selected reviews and book, see: (a) Culkin, D. A.; Hartwig, J. F. Acc. Chem. Res. 2003, 36, 234.
      (b) Johansson, C. C. C.; Colacot, T. J. Angew. Chem., Int. Ed. 2010, 49, 676.

    35. [35]

      (a) Chatgilialoglu, C.; Ferreri, C.; Ballestri, M.; Curran, D. P. Tetrahedron Lett. 1996, 37, 6387.
      (b) Clive, D. L. J.; Paul, C. C.; Wang, Z. J. Org. Chem. 1997, 62, 7028.
      (c) Miura, K.; Fujisawa, N.; Saito, H.; Wang, D.; Hosomi, A. Org. Lett. 2001, 3, 2591.
      (d) Usugi, S.; Yorimitsu, H.; Oshima, K. Tetrahedron Lett. 2001, 42, 4535.
      (e) Yorimitsu, H.; Shinokubo, H.; Matsubara, S.; Oshima, K. J. Org. Chem. 2001, 66, 7776.
      (f) Tanaka, S.; Nakamura, T.; Yorimitsu, H.; Oshima, K. Synlett 2002, 569.
      (g) Cai, Y.; Roberts, B. P. Tetrahedron Lett. 2003, 44, 4645.
      (h) Cai, Y.; Roberts, B. P.; Tocher, D. A.; Barnett, S. A. Org. Biomol. Chem. 2004, 2, 2517.
      (i) Takami, K.; Yorimitsu, H.; Oshima, K. Org. Lett. 2004, 6, 4555.
      (j) Song, H.-J.; Lim, C. J.; Kim, S. Chem. Commun. 2006, 2893.
      (k) Beckwith, A. L. J.; Schiesser, C. H. Org. Biomol. Chem. 2011, 9, 1736.
      (l) Klos, M. R.; Kazmaier, U. Eur. J. Org. Chem. 2013, 2013, 1726.

    36. [36]

      Sudo, Y.; Yamaguchi, E.; Itoh, A. Org. Lett. 2017, 19, 1610.  doi: 10.1021/acs.orglett.7b00428

    37. [37]

      (a) Cabrele, C.; Reiser, O. J. Org. Chem. 2016, 81, 10109.
      (b) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem., Int. Ed. 2012, 51, 8960.

    38. [38]

      (a) Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893.
      (b) Felpin, F. X.; Lebreton, J. Eur. J. Org. Chem. 2003, 3693.
      (c) O'Hagan, D. Nat. Prod. Rep. 2000, 17, 435.
      (d) Ritchie, T. J.; Macdonald, S. J. F.; Young, R. J.; Pickett, S. D. Drug Discovery Today 2011, 16, 164.

    39. [39]

      Zhang, H.-W.; Muñiz, K. ACS Catal. 2017, 7, 4122.  doi: 10.1021/acscatal.7b00928

    40. [40]

      (a) Saikia, I.; Borah, A. J.; Phukan, P. Chem. Rev. 2016, 116, 6837.
      (b) Djerassi, C. Chem. Rev. 1948, 43, 271.
      (c) Skell, P. S.; Day, J. C. Acc. Chem. Res. 1978, 11, 381.

    41. [41]

      Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. Chem. Rev. 2016, 116, 2478.  doi: 10.1021/acs.chemrev.5b00484

    42. [42]

      Breugst, M.; Detmar, E.; vonder Heiden, D. ACS Catal. 2016, 6, 3203.  doi: 10.1021/acscatal.6b00447

    43. [43]

      Tsuji, N.; Kobayashi, Y.; Takemoto, Y. Chem. Commun. 2014, 50, 13691.  doi: 10.1039/C4CC06014H

    44. [44]

      (a) Svensson, P. H.; Kloo, L. Chem. Rev. 2003, 103, 16494.
      (b) de Violet, P. F. Rev. Chem. Intermed. 1981, 4, 121.

    45. [45]

      (a) Yamada, K.; Kato, T.; Hirata, Y. J. Chem. Soc., Chem. Commun. 1969, 1479.
      (b). Tada, N.; Cui, L.; Ishigami, T.; Ban, K.; Miura, T.; Itoh, A. Green Chem. 2012, 14, 3007.
      (c) Hou, R.-S.; Wang, H.-M.; Lin, Y.-C.; Chen, L.-C. J. Chin. Chem. Soc. 2005, 52, 1029.
      (d) Hou, R.-S.; Wang, H.-M.; Lin, Y.-C.; Chen, L.-C. Heterocycles 2005, 65, 649.
      (e) Uyanik, M.; Yasui, T.; Ishihara, K. Bioorg. Med. Chem. Lett. 2009, 19, 3848.
      (f) Shah, A. A.; Khan, Z. A.; Choudhary, N.; Loholter, C.; Schafer, S.; Marie, G. P. L.; Farooq, U.; Witulski, B.; Wirth, T. Org. Lett. 2009, 11, 3578.
      (g) Farooq, U.; Schafer, S.; Shah, A. A.; Freudendahl, D. M.; Wirth, T. Synthesis 2010, 1023.
      (h) Uyanik, M.; Suzuki, D.; Yasui, T.; Ishihara, K. Angew. Chem., Int. Ed. 2011, 50, 5331.
      (i) Uyanik, M.; Ishihara, K. ChemCatChem 2012, 4, 177.

    46. [46]

      Tada, N.; Ishigami, T.; Cui, L.; Ban, K.; Miura, T.; Itoh, A. Tetrahedron Lett. 2013, 54, 256.  doi: 10.1016/j.tetlet.2012.11.014

    47. [47]

      Selvam, T. P.; Kumar, P. V. Res. Pharm. 2011, 1, 1.

    48. [48]

      (a) Gundla, R.; Kazemi, R.; Sanam, R.; Muttineni, R.; Sarma, J. A. R. P.; Dayam, R.; Neamati, N. J. Med. Chem. 2008, 51, 3367.
      (b) Mendes da Silva, J. F.; Walters, M.; Al-Damluji, S.; Ganellin, C. R. Bioorg. Med. Chem. 2008, 16, 7254.

    49. [49]

      (a) Wendlandt A. E.; Stahl, S. S. J. Am. Chem. Soc. 2014, 136, 506.
      (b) Chen, Z.; Chen, J.; Liu, M.; Ding, J.; Gao, W.; Huang, X.; Wu, H. J. Org. Chem. 2013, 78, 11342.
      (c) Vlaar, T.; Cioc, R. C.; Mampuys, P.; Maes, B. U. W.; Orru, R. V. A.; Ruijter, E. Angew. Chem., Int. Ed. 2012, 51, 13058.
      (d) Rachakonda, S.; Pratap, P. S.; Rao, M. V. B. Synthesis 2012, 44, 2065.
      (e) Yan, Y.; Wang, Z. Chem. Commun. 2011, 47, 9513.
      (f) Han, B.; Wang, C.; Han, R.-F.; Yu, W.; Duan, X.-Y.; Fang, R.; Yang, X.-L. Chem. Commun. 2011, 47, 7818.
      (g) Karnakar, K.; Shankar, J.; Murthy, S. N.; Ramesh, K.; Nageswar, Y. V. D. Synlett 2011, 1089.
      (h) Zhang, J.; Yu, C.; Wang, S.; Wan, C.; Wang, Z. Chem. Coommun. 2010, 46, 5244.
      (i) Zhang, J.; Yu, C.; Wang, S.; Wan, C.; Wang, Z. Org. Lett. 2010, 12, 2841.
      (j) Portela-Cubillo, F.; Scott, J. S.; Walton, J. C. J. Org. Chem. 2009, 74, 4934.
      (k) Portela-Cubillo, F.; Scott, J. S.; Walton, J. C. Chem. Commun. 2008, 2935.
      (l) Ferrini, S.; Ponticelli, F.; Taddei, M. Org. Lett. 2007, 9, 69.

    50. [50]

      Han, B.; Yang, X.-L.; Wang, C.; Bai, Y.-W.; Pan, T.-C.; Chen, X.; Yu, W. J. Org. Chem. 2012, 77, 1136.  doi: 10.1021/jo2020399

    51. [51]

      Fang, J.; Zhou, J.; Fang, Z. RSC Adv. 2013, 3, 334.  doi: 10.1039/C2RA22278G

    52. [52]

      Maheswari, C. U.; Kumar, G. S.; Venkateshwar, M.; Kumar, R. A.; Kantam, M. L.; Reddy, K. R. Adv. Synth. Catal. 2010, 352, 341.  doi: 10.1002/adsc.200900715

    53. [53]

      Vanden Eynde, J. J.; Godin, J.; Mayence, A.; Maquestiau, A.; Anders, E. Synthesis 1993, 867.

    54. [54]

      Peng, Y.; Zeng, Y.; Qiu, G.; Cai, L.; Pike, V. W. J. Heterocycl. Chem. 2010, 47, 1240.  doi: 10.1002/jhet.444

    55. [55]

      Yamaguchi, T.; Sakairi, K.; Yamaguchi, E.; Tada, N.; Itoh, A. RSC Adv. 2016, 6, 56892.  doi: 10.1039/C6RA04073J

    56. [56]

      Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257.  doi: 10.1021/jm501100b

    57. [57]

      (a) Minisci, F.; Galli, R.; Cecere, M.; Malatesta, V.; Caronna, T. Tetrahedron Lett. 1968, 9, 5609.
      (b) Minisci, F.; Vismara, E.; Fontana, F. Heterocycles 1989, 28, 489.
      (c) Minisci, F.; Fontana, F.; Vismara, E. J. Heterocycl. Chem. 1990, 27, 79.

    58. [58]

    59. [59]

      Fu, M.-C.; Shang, R.; Zhao, B.; Wang, B.; Fu, Y. Science 2019, 363, 1429.  doi: 10.1126/science.aav3200

    60. [60]

      Fu, Y.; Liu, L.; Yu, H.-Z.; Wang, Y.-M.; Guo, Q.-X. J. Am. Chem. Soc. 2005, 127, 7227.  doi: 10.1021/ja0421856

    61. [61]

      Noble, A.; Aggarwal, V. K. Sci. China:Chem. 2019, 62, 1083.  doi: 10.1007/s11426-019-9489-4

    62. [62]

      (a) Stang, P. J.; Zhdankin, V. V. Chem. Rev. 1996, 96, 1123.
      (b) Zhdankin, V. V. Curr. Org. Synth. 2005, 2, 121.
      (c) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299.
      (d) Wu, S. W.; Liu, J. L.; Liu, F. Org. Lett. 2016, 18, 1.

    63. [63]

      For selected reviews and papers: (a) Trost, B. M.; Brennan, M. K. Synthesis 2009, 3003.
      (b) Singh, G. S.; Desta, Z. Y. Chem. Rev. 2012, 132, 6104.
      (c) Dalpozzo, R.; Bartoli, G.; Bencivenni, G. Chem. Soc. Rev. 2012, 41, 7247.
      (d) Song, R.-J.; Liu, Y.; Xie, Y.-X.; Li, J.-H. Synthesis 2015, 47, 1195.

    64. [64]

      For selected examples: (a) Galliford, C. V.; Scheidt, K. A. Angew. Chem., Int. Ed. 2007, 46, 8748.
      (b) Jia, Y.-X.; Kündig, E. P. Angew. Chem., Int. Ed. 2009, 48, 1636.
      (c) Piou, T.; Neuville, L.; Zhu, J. Angew. Chem., Int. Ed. 2012, 51, 11561.

    65. [65]

      For selected reviews: (a) Kolb, H. C.; Nieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483.
      (b) Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S. Chem. Rev. 2007, 107, 5318.
      (c) Muňiz, K. Angew. Chem., Int. Ed. 2009, 48, 9412.
      (d) McDonald, R. I.; Liu, G.; Stahl, S. S. Chem. Rev. 2011, 111, 2981.
      (e) Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3464.
      (f) Chen, J.-R.; Yu, X.-Y.; Xiao, W.-J. Synthesis 2015, 47, 604.

    66. [66]

      Ji, W.-Q.; Tan, H.; Wang, M.; Li, P.-H.; Wang, L. Chem. Commun. 2016, 52, 1462.  doi: 10.1039/C5CC08253F

    67. [67]

      Seoud, O. A.; Ferreira, M.; Rodrigues, W. A.; Ruasse, M. F. J. Phys. Org. Chem. 2005, 18, 173.  doi: 10.1002/poc.864

    68. [68]

      (a) Ochiai, M.; Ito, T.; Takahashi, H.; Nakanishi, A.; Toyonari, M.; Sueda, T.; Goto, S.; Shiro, M. J. Am. Chem. Soc. 1996, 118, 7716.
      (b) Do, H.-Q.; Kashif Khan, R. M.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 15185.
      (c) Moteki, S. A.; Usui, A.; Selvakumar, S.; Zhang, T.; Maruoka, K. Angew. Chem., Int. Ed. 2014, 53, 11060.

    69. [69]

      (a) Li, H.; Li, P.; Tan, H.; Wang, L. Chem.-Eur. J. 2013, 19, 14432.
      (b) Chen, L.; Li, H.; Yu, F.; Wang, L. Chem. Commun. 2014, 50, 14866.

    70. [70]

      (a) Xie, J.; Xu, P.; Li, H.; Xue, Q.; Jin, H.; Cheng, Y.; Zhu, C. Chem. Commun. 2013, 49, 5672.
      (b) Tan, H.; Li, H.; Ji, W.; Wang, L. Angew. Chem., Int. Ed. 2015, 54, 8374.

    71. [71]

      (a) Murakami, A.; Gao, G.; Omura, M.; Yano, M.; Ito, C.; Furukawa, H.; Takahashi, D.; Koshimizu, K.; Ohigashi, H. Bioorg. Med. Chem. Lett. 2000, 10, 59.
      (b) Wang, C. J.; Hsieh, Y. J.; Chu, C. Y.; Lin, Y. Y.; Tseng, T. H. Cancer Lett. 2002, 183, 163.
      (c) Zhao, Y.; Zheng, Q.; Dakin, K.; Xu, K.; Martinez, M. L.; Li, W. H. J. Am. Chem. Soc. 2004, 126, 4653.
      (d) Borges, F.; Roleira, F.; Milhazes, N.; Santana, L.; Uriarte, E. Curr. Med. Chem. 2005, 12, 887.
      (e) Signore, G.; Nifosi, R.; Albertazzi, L.; Storti, B.; Bizzarri, R. J. Am. Chem. Soc. 2010, 132, 1276.
      (f) Wang, C.; Wu, C.; Zhu, J.; Miller, R. H.; Wang, Y. J. Med. Chem. 2011, 54, 2331.
      (g) Sashidhara, K. V.; Kumar, A.; Chatterjee, M.; Rao, K. B.; Singh, S.; Verma, A. K.; Palit, G. Bioorg. Med. Chem. Lett. 2011, 21, 1937.
      (h) Peng, X.; Damu, G.; Zhou, C. Curr. Pharm. Des. 2013, 19, 3884.
      (i) Sandhu, S.; Bansal, Y.; Silakari, O.; Bansal, G. Bioorg. Med. Chem. 2014, 22, 3806.

    72. [72]

      (a) Harayama, T.; Katsuno, K.; Nishiok, H.; Fujii, M.; Nishita, Y.; Ishii, H.; Kaneko, Y. Heterocycles 1994, 39, 613.
      (b) Kadnikov, D. V.; Larock, R. C. Org. Lett. 2000, 2, 3643.
      (c) Kabalka, G. W.; Dong, G.; Venkataiah, B. Tetrahedron Lett. 2004, 45, 5139.
      (d) Oyamada, J.; Kitamura, T. Tetrahedron 2006, 62, 6918.
      (e) Surya, P. R. H.; Sivakumar, S. J. Org. Chem. 2006, 71, 8715.
      (f) Zhang, L.; Meng, T.; Fan, R.; Wu, J. J. Org. Chem. 2007, 72, 7279.
      (g) Yuan, H.-J.; Wang, M.; Liu, Y.-J.; Liu, Q. Adv. Synth. Catal. 2009, 351, 112.
      (h) Yuan, H.; Wang, M.; Liu, Y.; Wang, L.; Liu, J.; Liu, Q. Chem.-Eur. J. 2010, 16, 13450.
      (i) Raju, B.-C.; Tiwari, A.-K.; Kumar, J.-K.; Ali, A.-Z.; Agawane, S.-B.; Saidachary, G.; Madhusudana, K. Bioorg. Med. Chem. 2010, 18, 358.
      (j) Fernandes, T. A.; GontijoVaz, B.; Eberlin, M. N.; Silva, A. J. M.; Costa, P. R. R. J. Org. Chem. 2010, 75, 7085.
      (k) Yan, K.; Yang, D.; Wei, W.; Wang, F.; Shuai, Y.; Li, Q.; Wang, H. J. Org. Chem. 2015, 80, 1550.

    73. [73]

      Yang, S.; Tan, H.; Ji, W.-Q.; Zhang, X.-B.; Li, P.-H.; Wang, L. Adv. Synth. Catal. 2017, 359, 1.  doi: 10.1002/adsc.201601440

    74. [74]

      Huang, H.; Zhang, G.; Chen, Y. Angew. Chem., Int. Ed. 2015, 54, 7872.  doi: 10.1002/anie.201502369

    75. [75]

      (a) Matcha, K.; Narayan, R.; Antonchick, A. P. Angew. Chem., Int. Ed. 2013, 52, 7985.
      (b) Do, H.-Q.; Kashif Khan, R. M.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 15185.
      (c) Moteki, S. A.; Usui, A.; Selvakumar, S.; Zhang, T.; Maruoka, K. Angew. Chem., Int. Ed. 2014, 53, 11060.

    76. [76]

      (a) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529.
      (b) Carlo, B.; Donna, M. H.; Amos, B. S. Chem. Med. Chem. 2013, 8, 385.
      (c) Ballatore, C.; Soper, J. H.; Piscitelli, F.; James, M.; Huang, L.; Atasoylu, O.; Huryn, D. M.; Trojanowski, J. Q.; Lee, V. M.; Brunden, K. R.; Smith, A. B. J. Med. Chem. 2011, 54, 6969.
      (d) Malwal, S. R.; Sriram, D.; Yogeeswari, P.; Konkimalla, V. B.; Chakrapani, H. J. Med. Chem. 2012, 55, 553.
      (e) Feng, M.; Tang, B.; Liang, S. H.; Jiang, X. Curr. Top. Med. Chem. 2016, 16, 1200.
      (f) Adhikari, N.; Mukherjee, A.; Saha, A.; Jha, T. Eur. J. Med. Chem. 2017, 129, 72.

    77. [77]

      (a) Wynne, J. H.; Price, S. E.; Rorer, J. R.; Stalick, W. M. Synth. Commun. 2003, 33, 341.
      (b) Khalafi-Nezhad, A.; Parhami, A.; Zare, A.; Shirazi, A. N.; Zare, A. R. M.; Hassaninejad, A. Can. J. Chem. 2008, 86, 456.
      (c) Wu, X.-F.; Vovard-Le Bray, C.; Bechki, L.; Darcel, C. Tetrahedron 2009, 65, 7380.
      (d) Chang, J. W. W.; Ton, T. M. U.; Tania, S.; Taylor, P. C.; Chan, P. W. H. Chem. Commun. 2010, 46, 922.
      (e) Chawla, R.; Singh, A. K.; Yadav, L. D. S. Tetrahedron Lett. 2014, 55, 3553.
      (f) Morales, S.; Guijarro, F. G.; Garcia Ruano, J. L.; Cid, M. B. J. Am. Chem. Soc. 2014, 136, 1082.
      (g) Reeves, J. T.; Visco, M. D.; Marsini, M. A.; Grinberg, N.; Busacca, C.A.; Mattson, A. E.; Senanayake, C. H. Org. Lett. 2015, 17, 2442.
      (h) Sharghi, H.; Hosseini-Sarvari, M.; Ebrahimpourmoghaddam, S. ARKIVOC 2007, xv, 255.

    78. [78]

      (a) Sisko, J.; Weinreb, S. M. J. Org. Chem. 1990, 55, 393.
      (b) Trost, B. M.; Marrs, C. J. Org. Chem. 1991, 56, 6468.
      (c) Huang, D.; Wang, X.; Wang, X.; Chen, W.; Wang, X.; Hu, Y. Org. Lett. 2016, 18, 604.

    79. [79]

      (a) Hopkins, M. D.; Scott, K. A.; DeMier, B. C.; Morgan, H. R.; Macgruder, J. A.; Lamar, A. A. Org. Biomol. Chem. 2017, 15, 9209.
      (b) Zard, S. Z. Chem. Soc. Rev. 2008, 37, 1603.
      (c) Höfling, S. B.; Heinrich, M. R. Synthesis 2011, 173.
      (d) Chen, J. R.; Hu, X. Q.; Lu, L. Q.; Xiao, W. J. Chem. Soc. Rev. 2016, 45, 2044.
      (e) Achar, T. K.; Mal, P. J. Org. Chem. 2015, 80, 666.
      (f) Jin, L. M.; Lu, H.; Cui, Y.; Lizardi, C. L.; Arzua, T. N.; Wojtas, L.; Cui, X.; Zhang, X. P. Chem. Sci. 2014, 5, 2422.
      (g) Liu, Z.; Zhang, J.; Chen, S.; Shi, E.; Xu, Y.; Wan, X. Angew. Chem. 2012, 51, 3231.

    80. [80]

      Hopkins, M. D.; Brandeburg, Z. C.; Hanson A. J.; Lamar, A. A. Molecules 2018, 23, 1838.  doi: 10.3390/molecules23081838

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    3. [3]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    4. [4]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    5. [5]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    6. [6]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    7. [7]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    8. [8]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    9. [9]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    10. [10]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    11. [11]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    12. [12]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    13. [13]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    14. [14]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    15. [15]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    16. [16]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    17. [17]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    18. [18]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    19. [19]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    20. [20]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

Metrics
  • PDF Downloads(257)
  • Abstract views(6896)
  • HTML views(2039)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return