Citation: Pan Chao, Liu Peng, Wu An'guo, Li Ming, Wen Lirong, Guo Weisi. Electrochemical-Promoted Synthesis of 2-Thiazolines via Selenylation/Cyclization of N-Allylthioamides[J]. Chinese Journal of Organic Chemistry, ;2020, 40(9): 2855-2862. doi: 10.6023/cjoc202004051 shu

Electrochemical-Promoted Synthesis of 2-Thiazolines via Selenylation/Cyclization of N-Allylthioamides

  • Corresponding author: Wen Lirong, wenlirong@qust.edu.cn Guo Weisi, wsguo@qust.edu.cn
  • Received Date: 30 April 2020
    Revised Date: 7 June 2020
    Available Online: 19 June 2020

    Fund Project: the Natural Science Foundation of Shandong Province ZR2019MB010the National College Student's Innovation and Entrepreneurship Training Program 201910426037the National Natural Science Foundation of China 21572110Project supported by the National Natural Science Foundation of China (No. 21572110), the Natural Science Foundation of Shandong Province (No. ZR2019MB010) and the National College Student's Innovation and Entrepreneurship Training Program (No. 201910426037)

Figures(3)

  • An electrochemical selenylation/cyclization of N-allylthioamides has been developed for the synthesis of selenium-containing 2-thiazolines. This protocol provides an efficient approach to produce 2-thiazolines with broad substrate scope under mild reaction conditions. Preliminary mechanistic study indicates that selenium radical may be involved. The reaction is easy operated under catalyst- and oxidant-free conditions.
  • 加载中
    1. [1]

      (a) Yuichi, O.; Yuichi, M.; Masahito, Y.; Takayuki, D. J. Med. Chem. 2017, 60, 6751.
      (b) Conley, N. R.; Andrasi, A.-D.; Rao, J.; Moerner, W. E. Angew. Chem.. Int. Ed. 2012, 51, 3350.
      (c) Marson, C. M.; Matthews, C. J.; Yiannaki, E.; Atkinson, S. J.; Soden, P. E.; Shukla, L.; Lamadema, N.; Thomas, N. S. B. J. Med. Chem. 2013, 56, 6156.
      (d) Altıntop, M. D.; Kaplancıklı, Z. A.; Çiftçi, G. A.; Demirel, R. Eur. J. Med. Chem. 2014, 74, 264.

    2. [2]

      (a) Du, D.-M.; Lu, S.-F.; Fang, T.; Xu, J. J. Org. Chem. 2005, 70, 3712.
      (b) Mellah, M.; Voituriez, A.; Schulz, E. Chem. Rev. 2007, 107, 5133.
      (c) Liu, L.; Li, J.; Wang, M.; Du, F.; Qin, Z.; Fu, B. Tetrahedron. Asymmetry 2011, 22, 550.

    3. [3]

      (a) Alom, N. E.; Wu, F.; Li, W. Org. Lett. 2017, 19, 930.
      (b) Gaumont, A. C.; Gulea, M.; Levillain, J. Chem. Rev. 2009, 109, 1371.
      (c) Jeon, H.; Kim D.; Lee, J. H.; Song J.; Lee, W. S.; Kang, D. W.; Kang, S.; Lee, S. B.; Choi, S.; Hong, K. B. Adv. Synth. Catal. 2018, 360, 779.

    4. [4]

      (a) Trose, M.; Lazreg, F.; Lesieur, M.; Cazin, C. S. J. Green Chem. 2015, 17, 3090.
      (b) Maltsev, O. V.; Walter, V.; Brandl, M. J.; Hintermann, L. Synthesis 2013, 45, 2763.

    5. [5]

      (a) Qumruddeen; Yadav, A.; Kant, R.; Tripathi, C. B. J. Org. Chem. 2020, 85, 2814.
      (b) Morse, P. D.; Nicewicz, D. A. Chem. Sci. 2015, 6, 270.
      (c) Liu, G.-Q.; Yang, C.-H.; Li, Y.-M. J. Org. Chem. 2015, 80, 11339.

    6. [6]

      Shao, L.; Li, Y.; Lu, J.; Jiang, X. Org. Chem. Front. 2019, 6, 2999.  doi: 10.1039/C9QO00620F

    7. [7]

      (a) Seng, H.-L.; Tiekink, E. R. T. Appl. Organomet. Chem. 2012, 26, 655.
      (b) Sahu, .P. K.; Umme, T.; Yu, J.; Nayak, A.; Kim, G.; Noh, M.; Lee, J.-Y.; Kim, D.-D.; Jeong, L. S. J. Med. Chem. 2015, 58, 8734.
      (c) Nogueira, C. W.; Zeni, G.; Rocha. J. B. T. Chem. Rev. 2004, 104, 6255.

    8. [8]

      (a) Engman, L. J. Org. Chem. 1991, 56, 3425.
      (b) Sahoo, H.; Singh, S.; Baidya, M. Org. Lett. 2018, 20, 3678.
      (c) Wang, X.; Mu, S.; Sun, T.; Sun, K. Chin. J. Org. Chem. 2019, 39, 2802(in Chinese).
      (王薪, 穆石强, 孙婷, 孙凯, 有机化学, 2019, 39, 2802.)
      (d) Wang, M.; Wu, Z.; Zhu, C. Org. Chem. Front. 2017, 4, 427.
      (e) Reddy, C. R.; Ranjan, R.; Prajapti, S. K. Org. Lett. 2019, 21, 623.

    9. [9]

      Zhang, Q.-B.; Yuan, P.-F.; Kai, L.-L.; Liu, K.; Ban, Y.-L.; Wang, X.-Y.; Wu, L.-Z.; Liu, Q. Org. Lett. 2019, 21, 885.  doi: 10.1021/acs.orglett.8b03738

    10. [10]

      Yu, J.-M.; Cai, C. Org. Biomol. Chem. 2018, 16, 490.  doi: 10.1039/C7OB02892J

    11. [11]

      Casola, K. K.; Back, D. F.; Zeni, G. J. Org. Chem. 2015, 80, 7702.  doi: 10.1021/acs.joc.5b01448

    12. [12]

      Sun, K.; Wang, S.; Feng, R.; Zhang, Y.; Wang, X.; Zhang, Z.; Zhang, B. Org. Lett. 2019, 21, 2052.  doi: 10.1021/acs.orglett.9b00240

    13. [13]

      (a) Xiong, P.; Xu, H.-C. Acc. Chem. Res. 2019, 52, 3339.
      (b) Yuan, Y.; Lei, A. Acc. Chem. Res. 2019, 52, 3309.
      (c) Jiang, Y.; Xu, K.; Zeng, C. Chem. Rev. 2018, 118, 4485.
      (d) Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230.

    14. [14]

      (a) Adeli, Y.; Huang, K.-M.; Liang, Y.-J.; Jiang, Y.-Y.; Liu, J.-Z.; Song, S.; Zeng, C.-C.; Jiao, N. ACS Catal. 2019, 9, 2063.
      (b) Huang, M.; Dai, J.; Cheng, X.; Ding, M. Org. Lett. 2019, 21, 7759.
      (c) Lian, F.; Sun, C.; Xu, K.; Zeng, C. Org. Lett. 2019, 21, 156.
      (d) Zhang, S.; Li, L.; Xue, M.; Zhang, R.; Xu, K.; Zeng, C. Org. Lett. 2018, 20, 3443.
      (e) Huang, C.; Qian, X.-Y.; Xu, H.-C. Angew. Chem.. Int. Ed. 2019, 58, 6650.
      (f) Feng, E.-Q.; Hou, Z.-W.; Xu, H.-C. Chin. J. Org. Chem. 2019, 39, 1424(in Chinese).
      (冯恩祺, 侯中伟, 徐海超, 有机化学, 2019, 39, 1424.)
      (g) Hou, Z.-W.; Xu, H.-C. Chin. J. Chem. 2020, 38, 394.
      (h) Liu, W.-Q.; Yang, X.-L.; Tung, C.-H.; Wu, L.-Z. Acta Chim. Sinica 2019, 77, 861(in Chinese).
      (刘文强, 杨修龙, 佟振合, 吴骊珠, 化学学报, 2019, 77, 861.)

    15. [15]

      (a) Li, Q.-Y.; Cheng, S.-Y.; Tang, H.-T.; Pan, Y.-M. Green Chem. 2019, 21, 5517.
      (b) Cao, Y.; Yuan, Y.; Lin, Y.; Jiang, X.; Weng, Y.; Wang, T.; Bu, F.; Zeng, L.; Lei, A. Green Chem. 2020, 22, 1548.
      (c) Meng, X.-J.; Zhong, P.-F.; Wang, Y.-M.; Wang, H.-S.; Tang, H.-T.; Pan, Y.-M. Adv. Synth. Catal. 2020, 362, 506.
      (d) He, M.-X.; Mo, Z.-Y.; Wang, Z.-Q.; Cheng, S.-Y.; Xie, R.-R.; Tang, H.-T.; Pan, Y.-M. Org. Lett. 2020, 22, 724.
      (e) Wang, Z.-Q.; Meng, X.-J.; Li, Q.-Y.; Tang, H.-T.; Wang, H.-S.; Pan, Y.-M. Adv. Synth. Catal. 2018, 360, 4043.
      (f) Zhang, Z.; Zhang, L.; Cao, Y.; Li, F.; Bai, G.; Liu, G.; Yang, Y.; Mo, F. Org. Lett. 2019, 21, 762.
      (g) Wang, Z.-Q.; Hou, C.; Zhong, Y.-F.; Lu, Y.-X.; Mo, Z.-Y.; Pan, Y.-M.; Tang, H.-T. Org. Lett. 2019, 21, 9841.
      (h) Li, D.; Seavill, P. W.; Wilden, D. J. D. ChemElectroChem 2019, 6, 5829.

    16. [16]

      Sun, L.; Yuan, Y.; Yao, M.; Wang, H.; Wang, D.; Gao, M.; Chen, Y.-H.; Lei, A. Org. Lett. 2019, 21, 1297.  doi: 10.1021/acs.orglett.8b03274

    17. [17]

      Guan, Z.; Wang, Y.; Wang, H.; Huang, Y.; Wang, S.; Tang, H.; Zhang, H.; Lei, A. Green Chem. 2019, 21, 4976.  doi: 10.1039/C9GC02665G

    18. [18]

      Mallick, S.; Baidya, M.; Mahanty, K.; Maiti, D.; Sarkar, S. D. Adv. Synth. Catal. 2020, 362, 1046.  doi: 10.1002/adsc.201901262

    19. [19]

      (a) Guo, W.-S.; Wen, L.-R.; Li, M. Org. Biomol. Chem. 2015, 13, 1942.
      (b) Guo, W.-S.; Gong, H.; Zhang, Y.-A.; Wen, L.-R.; Li, M. Org. Lett. 2018, 20, 6394.
      (c) Li, M.; Cao, H.; Wang, Y.; Lv, X.-L.; Wen, L.-R. Org. Lett. 2012, 14, 3470.

    20. [20]

      (a) Meanwell, N. A. J. Med. Chem. 2018, 61, 5822.
      (b) Charpentier, J.; Früh, N.; Togni, A. Chem. Rev. 2015, 115, 650.
      (c) Qing, F. Chin. J. Org. Chem. 2012, 32, 815(in Chinese).
      (卿凤翎, 有机化学, 2012, 32, 815.)

    21. [21]

      (d) Zhang, F.; Peng, X.; Ma, J. Chin. J. Org. Chem. 2019, 39, 109(in Chinese).
      (张发光, 彭星, 马军安, 有机化学, 2019, 39, 109.)

  • 加载中
    1. [1]

      Wen-Bo Wei Qi-Long Zhu . Electrosynthesis of hydroxylamine from earth-abundant small molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100383-100383. doi: 10.1016/j.cjsc.2024.100383

    2. [2]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    3. [3]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    4. [4]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

Metrics
  • PDF Downloads(8)
  • Abstract views(758)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return