Citation: Dong Ziyang, Yang Zhanhui, Xu Jiaxi. Structural Modifications and Chiral Applications of Brucine[J]. Chinese Journal of Organic Chemistry, ;2020, 40(12): 4101-4121. doi: 10.6023/cjoc202004049 shu

Structural Modifications and Chiral Applications of Brucine

  • Corresponding author: Yang Zhanhui, zhyang@mail.buct.edu.cn
  • Received Date: 29 April 2020
    Revised Date: 17 June 2020
    Available Online: 8 July 2020

    Fund Project: Project supported by the Beijing Natural Science Foundation (No. 2202041) and the National Natural Science Foundation of China (No. 21602010)the Beijing Natural Science Foundation 2202041the National Natural Science Foundation of China 21602010

Figures(67)

  • The recent advances on the structural modifications and chiral applications of Brucine are reviewed. Brucine is a naturally occuring molecule with multiple functional groups and a complex stereochemical structure. Selective structural modification of brucine is challenging, and a variety of methods to achieve selective modifications at its specific site are available. The aryl moiety undergoes demethoxypentafluorophenylation, and the amide moiety undergoes the condensation with primary amine, deoxycyanation, deoxygenative reduction, and α-oximation. The tertiary amine moiety undergoes N-oxidation, formal carbene insertions of C-N or α-C-H bonds, three-component reactions with benzynes and phenols, N-amidation with nitrene, and N-alkylation with halogenated hydrocarbons. The C=C subunit undergoes dihydroxylation and hydrogenation, while the ether subunit undergoes hydrogenative cleavage. The modified structures have high potential medicinal values. As a chiral resolution reagent, brucine has been widely used in the resolution of racemic carboxylic acids, phosphoric or phosphonic acids, phenols, alcohols and some drugs. Additionally, brucine and its modified structures also find applications as chiral auxiliaries, chiral catalysts or chiral ligands in asymmetric synthesis and catalysis.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      Wormley, T. Micro-chemistry of Poisons Including Their Physiological, Pathological, and Legal Relations: Adapted to the Use of the Medical Jurist, Physician, and General Chemist, Wood, W., New York, 1869.

    4. [4]

      Buckingham, J. Bitter Nemesis:The Intimate History of Strychnine, CRC Press, Boca Raton, USA, 2007, p. 225.

    5. [5]

      Frédérich, M.; Choi, Y. H.; Verpoorte, R. Planta Med. 2003, 69, 1169.  doi: 10.1055/s-2003-818014

    6. [6]

      Malone, M. H.; St. John-Allan, K. M.; Bejar, E. J. Ethnopharmacol. 1992, 35, 295.  doi: 10.1016/0378-8741(92)90028-P

    7. [7]

    8. [8]

      Shiba, T. Kagaku Sosetsu 1976, 14, 129.

    9. [9]

    10. [10]

    11. [11]

    12. [12]

    13. [13]

      Liu, S.; Li, H.; Jiang, M.; Li, P. J. Instrum. Anal. 1998, 17, 5(in Chinese).
       

    14. [14]

      (a) Blakemore, D. C.; Castro, L.; Churcher, I.; Rees, D. C.; Thomas, A. W.; Wilson, D. M.; Wood, A. Nat. Chem. 2018, 10, 383.
      (b) Nicolaou, K. C.; Rigol, S. Angew. Chem. Int. Ed. 2019, 58, 11206.

    15. [15]

      (a) Cernak, T.; Dykstra, K. D.; Tyagarajan, S.; Vachal, P.; Krska, S. W. Chem. Soc. Rev. 2017, 46, 1760.
      (b) White, M. C.; Zhao, J. J. Am. Chem. Soc. 2018, 140, 13988.
      (c) Richardson, J.; Sharman, G.; Martínez-Olid, F.; Cañellas, S.; Gomez, J. E. React. Chem. Eng. 2020, 5, 779.
      (d) Feng, K.; Quevedo, R. E.; Kohrt, J. T.; Oderinde, M. S.; Reilly, U.; White, M. C. Nature (London, U. K.) 2020, 580, 621.

    16. [16]

      (a) Mohsen, A. M. Y.; Mandour, Y. M.; Sarukhanyan, E.; Breitinger, U.; Villmann, C.; Banoub, M. M.; Breitinger, H.-G.; Dandekar, T.; Holzgrabe, U.; Sotriffer, C.; Jensen, A. A. Zlotos, D. P. J. Nat. Prod. 2016, 79, 2997.
      (b) Svejstrup, T. D.; Ruffoni, A.; Julia, F.; Aubert, V. M.; Leonori, D. Angew. Chem. Int. Ed. 2017, 56, 14948.
      (c) Wang, J.; Li, R.; Dong, Z.; Liu, P.; Dong, G. Nat. Chem. 2018, 10, 866.
      (d) Ruffoni, A.; Juliá, F.; Svejstrup, T. D.; McMillan, A. J.; Douglas, J. J.; Leonori, D. Nat. Chem. 2019, 11, 426.
      (e) Berger, F.; Plutschack, M. B.; Riegger, J.; Yu, W.; Speicher, S.; Ho, M.; Frank, N.; Ritter, T. Nature (London, U. K.) 2019, 567, 223.
      (f) Nishii, Y.; Ikeda, M.; Hayashi, Y.; Kawauchi, S.; Miura, M. J. Am. Chem. Soc. 2020, 142, 1621.

    17. [17]

      Meyer, A. U.; Slanina, T.; Yao, C.-J.; König, B. ACS Catal. 2016, 6, 369.  doi: 10.1021/acscatal.5b02410

    18. [18]

      (a) Borie, C.; Mondal, S.; Arif, T.; Briand, M.; Lingua, H.; Dumur, F.; Gigmes, D.; Stocker, P.; Barbarat, B.; Robert, V.; Nicoletti, C.; Olive, D.; Maresca, M.; Nechab, M. Eur. J. Med. Chem. 2018, 148, 306.
      (b) Cierpiał, T.; Kiełbasiński, P.; Kwiatkowska, M.; Łyzwa, P.; Lubelska, K.; Kuran, D.; Dąbrowska, A.; Kruszewska, H.; Mielczarek, L.; Chilmonczyk, Z.; Wiktorska, K. Bioorg. Chem. 2020, 94, 103454.

    19. [19]

      (a) Otsuka, S.; Yorimitsu, H.; Osuka, A. Chem.-Eur. J 2015, 21, 14703.
      (b) Chen, W.; Hooper, T. N.; Ng, J.; White, A. J. P.; Crimmin, M. R. Angew. Chem. Int. Ed. 2017, 56, 12687.
      (c) Shigeno, M.; Okawa, T.; Imamatsu, M.; Nozawa-kumada, K.; Kondo, Y. Chem.-Eur. J. 2019, 25, 10294.

    20. [20]

      (a) Figueroa-Valverde, L.; Diaz-Cedillo, F.; Garcia-Cervera, E.; Pool-Gomez, E.; Camacho-Luis, A.; Rosas-Nexticapan, M.; Lopez-Ramos, M.; May-Gil, I.; Sarao-Alvarez, A.; Naal-Dzib, C. Asian J. Chem. 2013, 25, 6783.
      (b) Figueroa-Valverde, L.; Diaz-Cedillo, F.; Rosas-Nexticapa, M.; Garcia-Cervera, E.; Pool-Gomez, E.; Lopez-Ramos, M.; Hau-Heredia, L.; Sarabia-Alcocer, B. J. Chem. 2014, 757953/1-757953/10.
      (c) Figueroa-Valverde, L.; Diaz-Cedillo, F.; Garcia-Cervera, E.; Gomez, E. P.; Rosas-Nexticapa, M.; Lopez-Ramos, M. Asian J. Chem. 2014, 26, 4959.

    21. [21]

      Fuentes de Arriba, A. L.; Lenci, E.; Sonawane, M.; Formery, O.; Dixon, D. J. Angew. Chem. Int. Ed. 2017, 56, 3655.  doi: 10.1002/anie.201612367

    22. [22]

      (a) Fleming, F. F.; Yao, L.; Ravikumar, P. C.; Funk, L.; Shook, B. C. J. Med. Chem. 2010, 53, 7902.
      (b) Klein, B. A.; Robertson, I. M.; Reiz, B.; Kampourakis, T.; Li, L.; Sykes, B. D. ACS Med. Chem. Lett. 2019, 10, 1007.
      (c) Lameira, J.; Bonatto, V.; Cianni, L.; dos Reis Rocho, F.; Leitão, A.; Montanari, C. A. Phys. Chem. Chem. Phys. 2019, 21, 24723.

    23. [23]

      (a) Qi, L.; Hu, K.; Yu, S.; Zhu, J.; Cheng, T.; Wang, X.; Chen, J.; Wu, H. Org. Lett. 2017, 19, 218.
      (b) Seo, B.; Kim, Y. G.; Lee, P. H. Org. Lett. 2016, 18, 5050.
      (c) Kouznetsov, V. V.; Galvis, C. E. P. Tetrahedron 2018, 74, 773.

    24. [24]

      Bender, T. A.; Payne, P. R.; Gagné, M. R. Nat. Chem. 2018, 10, 85.  doi: 10.1038/nchem.2863

    25. [25]

      Zlotos, D. P. Buller, S. Holzgrabea, U. Mohr, K. Bioorg. Med. Chem. 2003, 11, 2627.  doi: 10.1016/S0968-0896(03)00146-9

    26. [26]

      Cai, B.-C.; He, Y.-W.; Zhang, Y.-Q.; Wu, H. Chin. Pharm. J. 1994, 29, 169(in Chinese).
       

    27. [27]

      Arnone, A.; Metrangolo, P.; Novo, B.; Resnati, G. Tetrahedron 1998, 54, 7831.  doi: 10.1016/S0040-4020(98)00417-7

    28. [28]

      Jousseaume, B.; Chanson, E. Synthesis 1987, 155.

    29. [29]

      Chen, J.; Lü, P.; Zhou, X.-J. Chin. J. Org. Chem. 1987, 7, 459(in Chinese).
       

    30. [30]

      Oh, K.; Knabe, W. E. Tetrahedron 2009, 65, 2966.  doi: 10.1016/j.tet.2009.02.013

    31. [31]

      Hansen, S. R.; Spangler, J. E.; Hansen, J. H.; Davies, H. M. L. Org. Lett. 2012, 14, 4626.  doi: 10.1021/ol3020754

    32. [32]

      He, J.; Hamann, L. G.; Davies, H. M. L.; Beckwith, R. E. J; Nat. Commun. 2015, 6, 5943.  doi: 10.1038/ncomms6943

    33. [33]

      Brandhofer, T.; Gini, A.; Stockerl, S.; Piekarski, D. G.; Mancheño, O. G. J. Org. Chem. 2019, 84, 12992.  doi: 10.1021/acs.joc.9b01765

    34. [34]

      Ross, S. P.; Hoye, T. R. Nat. Chem. 2017, 9, 523.  doi: 10.1038/nchem.2732

    35. [35]

      Li, J.; Cisar, J. S.; Zhou, C.-Y.; Vera, B.; Williams, H.; Rodríguez, A. D.; Cravatt, B. F.; Romo, D. Nat. Chem. 2013, 5, 510.  doi: 10.1038/nchem.1653

    36. [36]

      Fiori, K. W.; Du Bois, J. J. Am. Chem. Soc. 2007, 129, 562.  doi: 10.1021/ja0650450

    37. [37]

      Dong, Q.; Anderson, C. E.; Ciufolini, M. A. Tetrahedron Lett. 1995, 36, 5681.  doi: 10.1016/00404-0399(50)1122X-

    38. [38]

      Maestre, L.; Dorel, R.; Pablo, O.; Escofet, I.; Sameera, W. M. C.; Álvarez, E.; Maseras, F.; Diaz-Requejo, M. M.; Echavarren, A. M.; Pérez, P. J. J. Am. Chem. Soc. 2017, 139, 2216.  doi: 10.1021/jacs.6b08219

    39. [39]

      (a) Gharagozloo, P.; Lazareno, S.; Popham, A.; Birdsall, N. J. M. J. Med. Chem. 1999, 42, 438.
      (b) Birdsall, N. J. M.; Farries, T.; Gharagozloo, P.; Kobayashi, S.; Lazareno, S.; Sugimoto, M. Mol. Pharmacol. 1999, 55, 778.

    40. [40]

      (a) Král, V.; Pataridis, S.; Setnička, V.; Záruba, K.; Urbanová, M.; Volka, K. Tetrahedron 2005, 61, 5499.
      (b) Kejík, Z.; Záruba, K.; Michalík, D.; Šebek, J.; Dian, J.; Pataridis, S.; Volka, K.; Král, V. Chem. Commun. (Cambridge, U. K.) 2006, 1533.
      (c) Rezanka, P.; Záruba, K.; Král, V. Tetrahedron Lett. 2008, 49, 6448.
      (d) Záruba, K.; Králová, J.; Řezanka, P.; Poučková, P.; Veverková, L.; Král, V. Org. Biomol. Chem. 2010, 8, 3202.

    41. [41]

      (a) Kim, H. Y.; Shi, H.-J.; Knabe, W. E.; Oh, K. Angew. Chem. Int. Ed. 2009, 48, 7420.
      (b) Kim, H. Y.; Oh, K. Org. Lett. 2009, 11, 5682.
      (c) Kim, H. Y.; Kim, S.; Oh, K. Angew. Chem. Int. Ed. 2010, 49, 4476.

    42. [42]

      Van Rheenen, V.; Kelly, R. C.; Cha, D. Y. Tetrahedron Lett. 1976, 1973.

    43. [43]

      Karimov, R. R.; Sharma, A.; Hartwig, J. F. ACS Cent. Sci. 2016, 2, 715.  doi: 10.1021/acscentsci.6b00214

    44. [44]

      (a) Eisenberger, P.; Gischig, S.; Togni, A. Chem.-Eur. J. 2006, 12, 2579.
      (b) Parsons, A. T.; Buchwald, S. L. Angew. Chem. Int. Ed. 2011, 50, 9120.
      (c) Wang, X.; Ye, Y.; Zhang, S.; Feng, J.; Xu, Y.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2011, 133, 16410.
      (d) Mizuta, S.; Galicia-López, O.; Engle, K. M.; Verhoog, S.; Wheelhouse, K.; Rassias, G.; Gouverneur, V. Chem.-Eur. J. 2012, 18, 8583.
      (e) Shimizu, R.; Egami, H.; Hamashima, Y.; Sodeoka, M. Angew. Chem. Int. Ed. 2012, 51, 4577.
      (f) Wang, F.; Qi, X.; Liang, Z.; Chen, P.; Liu, G. Angew. Chem. Int. Ed. 2014, 53, 1881.

    45. [45]

      Lichosyt, D.; Zhang, Y.; Hurej, K.; Dydio, P. Nat. Catal. 2019, 2, 114.  doi: 10.1038/s41929-018-0207-1

    46. [46]

      Wren, H.; Williams, H. J. Chem. Soc., Trans. 1916, 109, 572.  doi: 10.1039/CT9160900572

    47. [47]

      Abderhalden, E.; Faust, W.; Haase, E. Z. Physiol. Chem. 1934, 228, 187.  doi: 10.1515/bchm2.1934.228.3-6.187

    48. [48]

      Toki, K. Bull. Chem. Soc. Jpn. 1958, 31, 333.  doi: 10.1246/bcsj.31.333

    49. [49]

      (a) Toda, F.; Tanaka, K.; Ueda, H. Tetrahedron Lett. 1981, 22, 4669.
      (b) Toda, F.; Tanaka, K.; Mori, K. Chem. Lett. 1983, 827.

    50. [50]

      Tanner, D. D.; Ruo, T. C. S.; Meintzer, C. P. J. Org. Chem. 1985, 50, 2573.  doi: 10.1021/jo00214a032

    51. [51]

      Jaen, J. C. e-EROS Encycl. Reagents Org. Synth. 2001, doi. org/10. 1002/047084289X. rb334.  doi: 10.1002/047084289X.rb334

    52. [52]

      (a) Hagishita, S.; Kuriyama, K.; Hayashi, M.; Nakano, Y.; Shingu, K.; Nakagawa, M. Bull. Chem. Soc. Jpn. 1971, 44, 496.
      (b) Warr, R. J.; Willis, A. C.; Wild, S. B. Inorg. Chem. 2008, 47, 9351.

    53. [53]

      (a) Yoshida, S.; Kasai, M.; Kimura, T.; Akiba, T.; Takahashi, T.; Sakamoto, S. Org. Process Res. Dev. 2012, 16, 654.
      (b) Moritomo, A.; Yamada, H.; Matsuzawa-Nomura, T.; Watanabe, T.; Itahana, H.; Oku, M.; Akuzawa, S.; Okada, M. Bioorg. Med. Chem. 2014, 22, 6026.

    54. [54]

      (a) Holzwarth, R.; Bartsch, R.; Cherkaoui, Z.; Solladié, G. Chem.-Eur. J. 2004, 10, 3931.
      (b) Holzwarth, R.; Bartsch, R.; Cherkaoui, Z.; Solladié, G. Eur. J. Org. Chem. 2005, 3536.
      (c) Tsunoda, Y.; Fukuta, K.; Imamura, T.; Sekiya, R.; Furuyama, T.; Kobayashi, N.; Haino, T. Angew. Chem. Int. Ed. 2014, 53, 7243.

    55. [55]

    56. [56]

      Záruba, K.; Král, V. Tetrahedron:Asymmetry 2002, 13, 2567.  doi: 10.1016/S0957-4166(02)00715-2

    57. [57]

      (a) Tanaka, K.; Oda, S.; Nishihote, S.; Hirayama, D.; Urbanczyk-Lipkowska, Z. Tetrahedron: Asymmetry 2009, 20, 2612.
      (b) Sundar, M. S.; Bedekar, A. V. RSC Adv. 2016, 6, 46258.

    58. [58]

      Röehrich, T.; Abu Thaher, B.; Manicone, N.; Otto, H.-H. Monatsh. Chem. 2004, 135, 979.

    59. [59]

      Piwowarczyk, K.; Zawadzka, A.; Roszkowski, P.; Szawkalo, J.; Leniewski, A.; Maurin, J. K.; Kranz, D.; Czarnocki, Z. Tetrahedron:Asymmetry 2008, 19, 309.  doi: 10.1016/j.tetasy.2008.01.014

    60. [60]

      Doyle, M. P.; Morgan, J. P.; Fettinger, J. C.; Zavalij, P. Y.; Colyer, J. T.; Timmons, D. J.; Carducci, M. D. J. Org. Chem. 2005, 70, 5291.  doi: 10.1021/jo050609o

    61. [61]

      White, J. D.; Shaw, S. Org. Lett. 2011, 13, 2488.  doi: 10.1021/ol2007378

    62. [62]

      Carlier, P. R.; Zhang, Y. Org. Lett. 2007, 9, 1319.  doi: 10.1021/ol070149g

    63. [63]

      Mo, F.; Dong, G. Science (Washington, DC, U. S.) 2014, 345, 68.  doi: 10.1126/science.1254465

    64. [64]

      Chen, J.; Kilpatrick, B.; Oliver, A. G.; Wulff, J. E. J. Org. Chem. 2015, 80, 8979.  doi: 10.1021/acs.joc.5b01332

    65. [65]

      Chen, J.; Sun, X.; Oliver, A. G.; Wulff, J. E. Can. J. Chem. 2017, 95, 234.  doi: 10.1139/cjc-2016-0125

    66. [66]

      Zhu, J.; Yuan, Y.; Wang, S.; Yao, Z.-J. ACS Omega 2017, 2, 4665.  doi: 10.1021/acsomega.7b00749

    67. [67]

      Kenyon, J. Org. Synth. 1926, 6, 68.  doi: 10.15227/orgsyn.006.0068

    68. [68]

      Hartmann, R. W.; Batzl, C.; Pongratz, T. M.; Mannschreck, A. J. Am. Chem. Soc. 1992, 35, 2210.

    69. [69]

      (a) Poupaert, J. H.; Cavalier, R.; Claesen, M. H.; Dumont, P. A. J. Med. Chem. 1975, 18, 1268.
      (b) Riedner, J.; Vogel, P. Tetrahedron: Asymmetry 2004, 15, 2657.

    70. [70]

      Laursen, J. B.; Jorgensen, C. G.; Nielsen, J. Bioorg. Med. Chem. 2003, 11, 723.  doi: 10.1016/S0968-0896(02)00472-8

    71. [71]

      Ashcroft, C. P.; Challenger, S.; Clifford, D.; Derrick, A. M.; Hajikarimian, Y.; Slucock, K.; Silk, T. V.; Thomson, N. M.; Williams, J. R. Org. Process Res. Dev. 2005, 9, 663.  doi: 10.1021/op050102f

    72. [72]

      Dung, P. T.; Trung, T. Q.; Kim, K. H. Arch. Pharmacal Res. 2009, 32, 1425.  doi: 10.1007/s12272-009-2012-5

    73. [73]

      Kuo, L. Y.; Glazier, S. K. Inorg. Chem. 2012, 51, 328.  doi: 10.1021/ic2016897

    74. [74]

      (a) Movassaghi, M.; Piizzi, G.; Siegel, D. S.; Piersanti, G. Angew. Chem. Int. Ed. 2006, 45, 5859.
      (b) Hazin, K.; Patrick, B. O.; Gates, D. P. Inorg. Chem. 2019, 58, 188.

    75. [75]

      (a) Matsumoto, K.; Uchida, T. Chem. Lett. 1981, 1673.
      (b) Ikemoto, T.; Nagata, T.; Yamano, M.; Ito, T.; Mizuno, Y.; Tomimatsu, K. Tetrahedron Lett. 2004, 45, 7757.

    76. [76]

      Kano, T.; Ohyabu, Y.; Saito, S.; Yamamoto, H. J. Am. Chem. Soc. 2002, 124, 5365.  doi: 10.1021/ja012287l

    77. [77]

      (a) Marckwald, W. Ber. 1904, 37, 349.
      (b) Toussaint, O.; Capdevielle, P.; Maumy, M. Tetrahedron Lett. 1987, 28, 539.

    78. [78]

      (a) Drabowicz, J.; Legędź, S.; Mikołajczyk, M. J. Chem. Soc., Chem. Commun. 1985, 23, 1670.
      (b) Drabowicz, J.; Legędź, S.; Mikołajczyk, M. Tetrahedron 1988, 44, 5243.

    79. [79]

      Spek, A. L.; Voorbergen, P.; Schat, G.; Blomberg. C.; Bickelhaupt, F. J. Organomet. Chem. 1974, 77, 147.  doi: 10.1016/S0022-328X(00)81313-3

    80. [80]

      (a) Kolesińska, B.; Kamiński, Z. J. Org. Lett. 2009, 11, 765.
      (b) Kolesińska, B.; Kasperowicz, K.; Sochacki, M.; Mazur, A.; Jankowski, S.; Kamiński, Z. J. Tetrahedron Lett. 2010, 51, 20.

    81. [81]

      Kinoshita, H.; Ihoriya, A.; Ju-Ichi, M.; Kimachi, T. Synlett 2010, 2330.

    82. [82]

      Nicolaou, K. C.; Liu, G.; Beabout, K.; McCurry, M. D.; Shamoo, Y. J. Am. Chem. Soc. 2017, 139, 3736.  doi: 10.1021/jacs.6b12654

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    3. [3]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    4. [4]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    5. [5]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    6. [6]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    7. [7]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    8. [8]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    9. [9]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    10. [10]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    11. [11]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    12. [12]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    13. [13]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    14. [14]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    15. [15]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    16. [16]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    17. [17]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    18. [18]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    19. [19]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    20. [20]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

Metrics
  • PDF Downloads(95)
  • Abstract views(5533)
  • HTML views(1101)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return