Citation: Dong Daoqing, Sun Yuanyuan, Li Guanghui, Yang Huan, Wang Zuli, Xu Xinming. Recent Progress in the Functionalization of Quinoline N-Oxide[J]. Chinese Journal of Organic Chemistry, ;2020, 40(12): 4071-4086. doi: 10.6023/cjoc202004047 shu

Recent Progress in the Functionalization of Quinoline N-Oxide

  • Corresponding author: Wang Zuli, wangzulichem@163.com
  • Received Date: 29 April 2020
    Revised Date: 30 June 2020
    Available Online: 15 July 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21772107) and the Key Research and Development Plan of Shandong Province (No. 2019GSF108017)the National Natural Science Foundation of China 21772107the Key Research and Development Plan of Shandong Province 2019GSF108017

Figures(67)

  • Owning to their low cost and readily available, quinoline N-oxides are widely used in organic synthesis. The functionalization reactions of C(2) and C(8) position of quinoline N-oxides and the reaction mechanisms of these reactions are summaried. It will be helpful for the reaction of quinoline N-oxide in the future.
  • 加载中
    1. [1]

      Khan, Q. A.; Lu, J.; Hecht, S. M. J. Nat. Prod. 2009, 72, 438.  doi: 10.1021/np8007232

    2. [2]

      Michael, J. P. Nat. Prod. Rep. 2007, 24, 223.  doi: 10.1039/b509528j

    3. [3]

      Salahuddin, A.; Inam, A.; van Zyl, R. L.; Heslop, D. C.; Chen, C.-T.; Avecilla, F.; Agarwal, S. M.; Azam, A. Bioorg. Med. Chem. 2013, 21, 3080.  doi: 10.1016/j.bmc.2013.03.052

    4. [4]

      Chung, P.-Y.; Bian, Z.-X.; Pun, H.-Y.; Chan, D.; Chan, A. S.-C.; Chui, C.-H.; Tang, J. C.-O.; Lam, K.-H. Future Med. Chem. 2015, 7, 947.  doi: 10.4155/fmc.15.34

    5. [5]

      Liang, Q.; Zhang, Y.; Zeng, M.; Guan, L.; Xiao, Y.; Xiao, F. Toxicol. Res. 2018, 7, 521.  doi: 10.1039/C8TX00029H

    6. [6]

      (a) Dong, D. Q.; Gao, X.; Li, L. X.; Hao, S. H.; Wang, Z. L. Res. Chem. Intermed. 2018, 44, 7557.
      (b) Liu, Q.; Cai, D.; Qi, Y.; Le, X. Acta Chim. Sinica 2020, 78, 263(in Chinese).
      (刘启雁, 蔡戴宏, 戚永育, 乐学义, 化学学报, 2020, 78, 263.)

    7. [7]

      Hao, S. H.; Li, L. X.; Dong, D. Q.; Wang, Z. L. Chin. J. Catal. 2017, 38, 1664.  doi: 10.1016/S1872-2067(17)62901-2

    8. [8]

      (a) Dong, D. Q.; Zhang, H.; Wang, Z. L. RSC Adv. 2017, 7, 3780.
      (b) Zhu, C.; Kou, L.; Bao, X. Chin. J. Chem. 2020, 38, 57.
      (c) Zhang, L.; Wu, B.; Zhou, Y.; Xia, J.; Zhou, S.; Wang, S. Chin. J. Chem. 2013, 31, 465.

    9. [9]

      Zhang, L.; Wang, Y. Synthesis 2015, 47, 289.  doi: 10.1055/s-0034-1379884

    10. [10]

      Yan, G.; Borah, A. J.; Yang, M. Adv. Synth. Catal. 2014, 356, 2375.  doi: 10.1002/adsc.201400203

    11. [11]

      Yang, Y.; Guo, J.; Liu, Z. Chin. J. Org. Chem. 2019, 39, 1913(in Chinese).
       

    12. [12]

    13. [13]

      Dong, D.; Li, G.; Chen, D.; Sun, Y.; Han, Q.; Wang, Z.; Xu, X.; Yu, X. Chin. J. Org. Chem. 2020, 40, 1766(in Chinese).
       

    14. [14]

      Dong, D. Q.; Hao, S. H.; Wang, Z. L. Mini-Rev. Org. Chem. 2017, 14, 130.  doi: 10.2174/1570193X14666170207145101

    15. [15]

      Dong, D. Q.; Chen, W. J.; Yang, Y.; Gao, X.; Wang, Z. L. ChemistrySelect 2019, 4, 2480.  doi: 10.1002/slct.201900060

    16. [16]

      Xie, L. Y.; Jiang, L. L.; Tan, J. X.; Wang, Y.; Xu, X. Q.; Zhang, B.; Cao, Z.; He, W. M. ACS Sustainable Chem. Eng. 2019, 7, 14153.  doi: 10.1021/acssuschemeng.9b02822

    17. [17]

      Zhu, Z. F.; Zhang, M. M.; Liu, F. Org. Biomol. Chem. 2019, 17, 1531.  doi: 10.1039/C8OB02786B

    18. [18]

      Zhang, C.; Zhao, J. P.; Hu, B. W.; Shi, J.; Chen, D. Organometallics 2019, 38, 654.  doi: 10.1021/acs.organomet.8b00847

    19. [19]

      Yan, H.; Hou, Z. W.; Xu, H. C. Angew. Chem., Int. Ed. 2019, 58, 4592.  doi: 10.1002/anie.201814488

    20. [20]

      Hao, S. H.; Li, L. X.; Dong, D. Q.; Wang, Z. L.; Yu, X. Y. Tetrahedron Lett. 2018, 59, 4073.  doi: 10.1016/j.tetlet.2018.10.001

    21. [21]

      Wu, Z.; Pi, C.; Cui, X.; Bai, J.; Wu, Y. Adv. Synth. Catal. 2013, 355, 1971.  doi: 10.1002/adsc.201300111

    22. [22]

      Larionov, O. V.; Stephens, D.; Mfuh, A.; Chavez, G. Org. Lett. 2014, 16, 864.  doi: 10.1021/ol403631k

    23. [23]

      Kumar, R.; Kumar, I.; Sharma, R.; Sharma, U. Org. Biomol. Chem. 2016, 14, 2613.  doi: 10.1039/C5OB02600H

    24. [24]

      Yu, S.; Sang, H. L.; Ge, S. Angew. Chem., Int. Ed. 2017, 56, 15896.  doi: 10.1002/anie.201709411

    25. [25]

      Sen, C.; Ghosh, S. C. Adv. Synth. Catal. 2018, 360, 905.  doi: 10.1002/adsc.201701330

    26. [26]

      Yuan, J.-W.; Li, W.-J.; Xiao, Y.-M. Tetrahedron 2017, 73, 179.  doi: 10.1016/j.tet.2016.11.070

    27. [27]

      Yuan, J.-W.; Qu, L.-B. Chin. Chem. Lett. 2017, 28, 981.  doi: 10.1016/j.cclet.2017.01.016

    28. [28]

      Yuan, J.-W.; Liu, S.-N.; Qu, L.-B. Tetrahedron 2017, 73, 2267.  doi: 10.1016/j.tet.2017.03.009

    29. [29]

      Li, W.-Z.; Wang, Z.-X. Asian J. Org. Chem. 2018, 7, 2527.  doi: 10.1002/ajoc.201800560

    30. [30]

      Yuan, Y.; Jiang, M.; Wang, T.; Xiong, Y.; Li, J.; Guo, H.; Lei, A. Chem. Commun. 2019, 55, 11091.  doi: 10.1039/C9CC05841A

    31. [31]

      Liu, Q.; Wu, L.-Z. Natl. Sci. Rev. 2017, 4, 359.  doi: 10.1093/nsr/nwx039

    32. [32]

      Zhang, X.; Han, Y.; Lin, L.; Liu, Y. Chin. J. Org. Chem. 2019, 39 2705(in Chinese).
       

    33. [33]

      Chen, Y.; Lu, L.-Q.; Yu, D.-G.; Zhu, C.-J.; Xiao, W.-J. Sci. China:Chem. 2019, 62, 24.  doi: 10.1007/s11426-018-9399-2

    34. [34]

      Gou, B.; Yang, C.; Zhang, L.; Xia, W. Acta Chim. Sinica 2017, 75, 66(in Chinese).  doi: 10.11862/CJIC.2017.005

    35. [35]

      Li, G.-H.; Han, Q.-Q.; Sun, Y.-Y.; Chen, D.-M.; Wang, Z.-L.; Xu, X.-M.; Yu, X.-Y. Chin. Chem. Lett. 2020, 31, 3255.  doi: 10.1016/j.cclet.2020.03.007

    36. [36]

      Muhammad, M. H.; Chen, X.-L.; Liu, Y.; Shi, T.; Peng, Y.; Qu, L.; Yu, B. ACS Sustainable Chem. Eng. 2020, 8, 2682.  doi: 10.1021/acssuschemeng.9b06010

    37. [37]

      He, S.; Chen, X.; Zeng, F.; Lu, P.; Peng, Y.; Qu, L.; Yu, B. Chin. Chem. Lett. 2020, 31, 1863.  doi: 10.1016/j.cclet.2019.12.031

    38. [38]

      Gao, Y.; Liu, Y.; Wan, J.-P. J. Org. Chem. 2019, 84, 2243.  doi: 10.1021/acs.joc.8b02981

    39. [39]

      Peng, S.; Lin, Y.; He, W. Chin. J. Org. Chem. 2020, 40, 541(in Chinese).
       

    40. [40]

      Zhou, M.; Qin, P.; Jing, L.; Sun, J.; Du, H. Chin. J. Org. Chem. 2020, 40, 598(in Chinese).
       

    41. [41]

      Li, Z.; Jin, J.; Huang, S. Chin. J. Org. Chem. 2020, 40, 563(in Chinese).
       

    42. [42]

      Li, D.; Liang, C.; Jiang, Z.; Zhang, J.; Zhuo, W. T.; Zou, F. Y.; Wang, W. P.; Gao, G. L.; Song, J. J. Org. Chem. 2020, 85, 2733.  doi: 10.1021/acs.joc.9b02933

    43. [43]

      Wang, H.; Pei, Y.; Bai, J.; Zhang, J.; Wu, Y.; Cui, X. RSC Adv. 2014, 4, 26244.  doi: 10.1039/C4RA02820A

    44. [44]

      Chen, X.; Cui, X.; Yang, F.; Wu, Y. Org. Lett. 2015, 17, 1445.  doi: 10.1021/acs.orglett.5b00330

    45. [45]

      Kumar, R.; Kumar, R.; Dhiman, A. K.; Sharma, U. Asian J. Org. Chem. 2017, 6, 1043.  doi: 10.1002/ajoc.201700267

    46. [46]

      Bering, L.; Antonchick, A. P. Org. Lett. 2015, 17, 3134.  doi: 10.1021/acs.orglett.5b01456

    47. [47]

      Xu, F.; Li, Y.; Huang, X.; Fang, X.; Li, Z.; Jiang, H.; Qiao, J.; Chu, W.; Sun, Z. Adv. Synth. Catal. 2018, 361, 520.

    48. [48]

      Sarmah, B. K.; Konwar, M.; Bhattacharyya, D.; Adhikari, P.; Das, A. Adv. Synth. Catal. 2019, 361, 5616.  doi: 10.1002/adsc.201901103

    49. [49]

      Xia, H.; Liu, Y.; Zhao, P.; Gou, S.; Wang, J. Org. Lett. 2016, 18, 1796.  doi: 10.1021/acs.orglett.6b00522

    50. [50]

      Zhang, Z.; Pi, C.; Tong, H.; Cui, X.; Wu, Y. Org. Lett. 2017, 19, 440.  doi: 10.1021/acs.orglett.6b03399

    51. [51]

      Wagh, S. B.; Singh, R. R.; Sahani, R. L.; Liu, R.-S. Org. Lett. 2019, 21, 2755.  doi: 10.1021/acs.orglett.9b00705

    52. [52]

      Chen, X.; Yang, F.; Cui, X.; Wu, Y. Adv. Synth. Catal. 2017, 359, 3922.  doi: 10.1002/adsc.201700931

    53. [53]

      Liang, C.; Zhuo, W.-T.; Niu, Y.-N.; Gao, G.-L. Synthesis 2020, 52, 219.  doi: 10.1055/s-0039-1690726

    54. [54]

      Li, G. H.; Dong, D. Q.; Yang, Y.; Yu, X. Y.; Wang, Z. L. Adv. Synth. Catal. 2019, 361, 832.

    55. [55]

      Ye, S.; Qiu, G.; Wu, J. Chem. Commun. 2019, 55, 1013.  doi: 10.1039/C8CC09250H

    56. [56]

      Qiu, G.; Lai, L.; Cheng, J.; Wu, J. Chem. Commun. 2018, 54, 10405.  doi: 10.1039/C8CC05847D

    57. [57]

      Li, G. H.; Dong, D. Q.; Deng, Q.; Yan, S. Q.; Wang, Z. L. Synthesis-Stuttgart 2019, 51, 3313.  doi: 10.1055/s-0037-1611787

    58. [58]

      Dong, D. Q.; Li, L. X.; Li, G. H.; Deng, Q.; Wang, Z. L.; Long, S. Chin. J. Catal. 2019, 40, 1494.  doi: 10.1016/S1872-2067(19)63420-0

    59. [59]

      Wang, L.; Zhang, Y.; Zhang, M.; Bao, P.; Lv, X.; Liu, H.-G.; Zhao, X.; Li, J.-S.; Luo, Z.; Wei, W. Tetrahedron Lett. 2019, 60, 1845.  doi: 10.1016/j.tetlet.2019.06.017

    60. [60]

      Bao, P.; Wang, L.; Liu, Q.; Yang, D.; Wang, H.; Zhao, X.; Yue, H.; Wei, W. Tetrahedron Lett. 2019, 60, 214.  doi: 10.1016/j.tetlet.2018.12.016

    61. [61]

      Yang, D.; Sun, P.; Wei, W.; Liu, F.; Zhang, H.; Wang, H. Chem.-Eur. J. 2018, 24, 4423.  doi: 10.1002/chem.201705866

    62. [62]

      Li, G.; Gan, Z.; Kong, K.; Dou, X.; Yang, D. Adv. Synth. Catal. 2019, 361, 1808.  doi: 10.1002/adsc.201900157

    63. [63]

      Sun, K.; Chen, X. L.; Zhang, Y. L.; Li, K.; Huang, X. Q.; Peng, Y. Y.; Qu, L. B.; Yu, B. Chem. Commun. 2019, 55, 12615.  doi: 10.1039/C9CC06924K

    64. [64]

      Tian, L.; Wan, J.-P.; Sheng, S. ChemCatChem 2020, 12, 2533.  doi: 10.1002/cctc.202000244

    65. [65]

      Sun, K.; Chen, X. L.; Li, X.; Qu, L. B.; Bi, W. Z.; Chen, X.; Ma, H. L.; Zhang, S. T.; Han, B. W.; Zhao, Y. F.; Li, C. J. Chem. Commun. 2015, 51, 12111.  doi: 10.1039/C5CC04484G

    66. [66]

      Su, Y.; Zhou, X.; He, C.; Zhang, W.; Ling, X.; Xiao, X. J. Org. Chem. 2016, 81, 4981.  doi: 10.1021/acs.joc.6b00475

    67. [67]

      Wang, R.; Zeng, Z.; Chen, C.; Yi, N.; Jiang, J.; Cao, Z.; Deng, W.; Xiang, J. Org. Biomol. Chem. 2016, 14, 5317.  doi: 10.1039/C6OB00925E

    68. [68]

      Yu, H.; Pi, C.; Wang, Y.; Cui, X.; Wu, Y. Chin. J. Org. Chem. 2018, 38, 124(in Chinese).
       

    69. [69]

      Han, Q.-Q.; Li, G.-H.; Sun, Y.-Y.; Chen, D.-M.; Wang, Z.-L.; Yu, X.-Y.; Xu, X.-M. Tetrahedron Lett. 2020, 61, 151704.  doi: 10.1016/j.tetlet.2020.151704

    70. [70]

      Dong, D. Q.; Chen, W. J.; Chen, D. M.; Li, L. X.; Li, G. H.; Wang, Z. L.; Deng, Q.; Long, S. Chin. J. Org. Chem. 2019, 39, 3190(in Chinese).
       

    71. [71]

      Li, L. X.; Dong, D. Q.; Hao, S. H.; Wang, Z. L. Tetrahedron Lett. 2018, 59, 1517.  doi: 10.1016/j.tetlet.2018.03.023

    72. [72]

      Bao, P.; Wang, L.; Yue, H.; Shao, Y.; Wen, J.; Yang, D.; Zhao, X.; Wang, H.; Wei, W. J. Org. Chem. 2019, 84, 2976.  doi: 10.1021/acs.joc.8b02844

    73. [73]

      Huang, G.; Li, X.; Luo, J.; Luo, Z.; Tan, M. Chin. J. Org. Chem. 2019, 39, 617(in Chinese).
       

    74. [74]

      Hui, R.; Zhang, S.; Tan, Z.; Wu, X.; Feng, B. Chin. J. Org. Chem. 2017, 37, 3060(in Chinese).
       

    75. [75]

      Du, B.; Qian, P.; Wang, Y.; Mei, H.; Han, J.; Pan, Y. Org. Lett. 2016, 18, 4144.  doi: 10.1021/acs.orglett.6b02289

    76. [76]

      Mai, W.; Lv, M.; Zhang, X.; Lu, K. J. Chem. Res. 2017, 41, 705.  doi: 10.3184/174751917X15125690124246

    77. [77]

      Li, P.; Jiang, Y.; Li, H.; Dong, W.; Peng, Z.; An, D. Synth. Commun. 2018, 48, 1909.  doi: 10.1080/00397911.2018.1460670

    78. [78]

      Sumunnee, L.; Buathongjan, C.; Pimpasri, C.; Yotphan, S. Eur. J. Org. Chem. 2017, 2017, 1025.  doi: 10.1002/ejoc.201601443

    79. [79]

      Fu, W.-K.; Sun, K.; Qu, C.; Chen, X.-L.; Qu, L.-B.; Bi, W.-Z.; Zhao, Y.-F. Asian J. Org. Chem. 2017, 6, 492.  doi: 10.1002/ajoc.201700001

    80. [80]

      Xie, L.-Y.; Peng, S.; Liu, F.; Chen, G.-R.; Xia, W.; Yu, X.; Li, W.-F.; Cao, Z.; He, W.-M. Org. Chem. Front. 2018, 5, 2604.  doi: 10.1039/C8QO00661J

    81. [81]

      Peng, S.; Song, Y.-X.; He, J.-Y.; Tang, S.-S.; Tan, J.-X.; Cao, Z.; Lin, Y.-W.; He, W.-M. Chin. Chem. Lett. 2019, 30, 2287.  doi: 10.1016/j.cclet.2019.08.002

    82. [82]

      Jiang, M.; Yuan, Y.; Wang, T.; Xiong, Y.; Li, J.; Guo, H.; Lei, A. Chem. Commun. 2019, 55, 13852.  doi: 10.1039/C9CC07777D

    83. [83]

      You, G.; Xi, D.; Sun, J.; Hao, L.; Xia, C. Org. Biomol. Chem. 2019, 17, 9479.  doi: 10.1039/C9OB02106J

    84. [84]

      Cai, H.; Yang, H.; Xu, J.; Bao, H.; Huang, L.; Zhang, H.; Zhang, P.; Li, W. Asian J. Org. Chem. 2019, 8, 2105.  doi: 10.1002/ajoc.201900548

    85. [85]

      Xie, L.-Y.; Fang, T.-G.; Tan, J.-X.; Zhang, B.; Cao, Z.; Yang, L.-H.; He, W.-M. Green Chem. 2019, 21, 3858.  doi: 10.1039/C9GC01175G

    86. [86]

      Xie, L.-Y.; Li, Y.-J.; Qu, J.; Duan, Y.; Hu, J.; Liu, K.-J.; Cao, Z.; He, W.-M. Green Chem. 2017, 19, 5642.  doi: 10.1039/C7GC02304A

    87. [87]

      Lai, M.; Zhai, K.; Cheng, C.; Wu, Z.; Zhao, M. Org. Chem. Front. 2018, 5, 2986.  doi: 10.1039/C8QO00840J

    88. [88]

      Zhang, S.-B.; Xu, X.-H.; Qing, F.-L. J. Fluorine Chem. 2019, 227, 109367.  doi: 10.1016/j.jfluchem.2019.109367

    89. [89]

      Li, G.; Jia, C.; Sun, K. Org. Lett. 2013, 15, 5198.  doi: 10.1021/ol402324v

    90. [90]

      Xie, L. Y.; Peng, S.; Liu, F.; Yi, J. Y.; Wang, M.; Tang, Z.; Xu, X.; He, W. M. Adv. Synth. Catal. 2018, 360, 4259.  doi: 10.1002/adsc.201800918

    91. [91]

      Chen, X.; Peng, M.; Huang, H.; Zheng, Y.; Tao, X.; He, C.; Xiao, Y. Org. Biomol. Chem. 2018, 16, 6202.  doi: 10.1039/C8OB00862K

    92. [92]

      Xie, L.-Y.; Peng, S.; Lu, L.-H.; Hu, J.; Bao, W.-H.; Zeng, F.; Tang, Z.; Xu, X.; He, W.-M. ACS Sustainable Chem. Eng. 2018, 6, 7989.  doi: 10.1021/acssuschemeng.8b01358

    93. [93]

      Xie, L.-Y.; Peng, S.; Liu, F.; Liu, Y.-F.; Sun, M.; Tang, Z.-L.; Jiang, S.; Cao, Z.; He, W.-M. ACS Sustainable Chem. Eng. 2019, 7, 7193.  doi: 10.1021/acssuschemeng.9b00200

    94. [94]

      Yu, H.; Dannenberg, C. A.; Li, Z.; Bolm, C. Chem.-Asian J. 2016, 11, 54.  doi: 10.1002/asia.201500875

    95. [95]

      Yu, X.; Yang, S.; Zhang, Y.; Guo, M.; Yamamoto, Y.; Bao, M. Org. Lett. 2017, 19, 6088.  doi: 10.1021/acs.orglett.7b02922

    96. [96]

      Han, S.; Gao, X.; Wu, Q.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Org. Chem. Front. 2019, 6, 830.  doi: 10.1039/C8QO01281D

    97. [97]

      Zhu, C.; Yi, M.; Wei, D.; Chen, X.; Wu, Y.; Cui, X. Org. Lett. 2014, 16, 1840.  doi: 10.1021/ol500183w

    98. [98]

      Li, G.; Jia, C.; Sun, K.; Lv, Y.; Zhao, F.; Zhou, K.; Wu, H. Org Biomol. Chem. 2015, 13, 3207.  doi: 10.1039/C5OB00135H

    99. [99]

      Wang, Z.; Han, M.-Y.; Li, P.; Wang, L. Eur. J. Org. Chem. 2018, 2018, 5954.  doi: 10.1002/ejoc.201800963

    100. [100]

      Behera, A.; Sau, P.; Sahoo, A. K.; Patel, B. K. J. Org. Chem. 2018, 83, 11218.  doi: 10.1021/acs.joc.8b01797

    101. [101]

      Xie, L.-Y.; Peng, S.; Jiang, L.-L.; Peng, X.; Xia, W.; Yu, X.; Wang, X.-X.; Cao, Z.; He, W.-M. Org. Chem. Front. 2019, 6, 167.  doi: 10.1039/C8QO01128A

    102. [102]

      Kim, D.; Ghosh, P.; Kwon, N. Y.; Han, S. H.; Han, S.; Mishra, N. K.; Kim, S.; Kim, I. S. J. Org. Chem. 2020, 85, 2476.  doi: 10.1021/acs.joc.9b03173

    103. [103]

      Chen, X.; Li, X.; Qu, Z.; Ke, D.; Qu, L.; Duan, L.; Mai, W.; Yuan, J.; Chen, J.; Zhao, Y. Adv. Synth. Catal. 2014, 356, 1979.  doi: 10.1002/adsc.201301065

    104. [104]

      Bi, W.-Z.; Sun, K.; Qu, C.; Chen, X.-L.; Qu, L.-B.; Zhu, S.-H.; Li, X.; Wu, H.-T.; Duan, L.-K.; Zhao, Y.-F. Org. Chem. Front. 2017, 4, 1595.  doi: 10.1039/C7QO00311K

    105. [105]

      Li, P.; Zhao, J.; Xia, C.; Li, F. Org. Chem. Front. 2015, 2, 1313.  doi: 10.1039/C5QO00204D

    106. [106]

      Chen, X.; Zhu, C.; Cui, X.; Wu, Y. Chem. Commun. 2013, 49, 6900.  doi: 10.1039/c3cc43947j

    107. [107]

      Bi, W.-Z.; Qu, C.; Chen, X.-L.; Qu, L.-B.; Liu, Z.-D.; Sun, K.; Li, X.; Zhao, Y.-F. Eur. J. Org. Chem. 2017, 2017, 5125.  doi: 10.1002/ejoc.201701080

    108. [108]

      Zhang, D.; Qiao, K.; Hua, J.; Liu, Z.; Qi, H.; Yang, Z.; Zhu, N.; Fang, Z.; Guo, K. Org. Chem. Front. 2018, 5, 2340.  doi: 10.1039/C8QO00499D

    109. [109]

      Wang, D.; Jia, H.; Wang, W.; Wang, Z. Tetrahedron Lett. 2014, 55, 7130.  doi: 10.1016/j.tetlet.2014.11.005

    110. [110]

      Stephens, D. E.; Lakey-Beitia, J.; Atesin, A. C.; Ateşin, T. A.; Chavez, G.; Arman, H. D.; Larionov, O. V. ACS Catal. 2015, 5, 167.  doi: 10.1021/cs501813v

    111. [111]

      Stephens, D. E.; Lakey-Beitia, J.; Chavez, G.; Ilie, C.; Arman, H. D.; Larionov, O. V. Chem. Commun. 2015, 51, 9507.  doi: 10.1039/C5CC02227D

    112. [112]

      Chen, X.; Cui, X.; Wu, Y. Org. Lett. 2016, 18, 2411.  doi: 10.1021/acs.orglett.6b00923

    113. [113]

      Chen, X.; Cui, X.; Wu, Y. Org. Lett. 2016, 18, 3722.  doi: 10.1021/acs.orglett.6b01746

    114. [114]

      Li, G. H.; Dong, D. Q.; Yu, X. Y.; Wang, Z. L. New J. Chem. 2019, 43, 1667.  doi: 10.1039/C8NJ05374J

    115. [115]

      Zhang, X.; Qi, Z.; Li, X. Angew. Chem., Int. Ed. 2014, 53, 10794.  doi: 10.1002/anie.201406747

    116. [116]

      Sharma, U.; Park, Y.; Chang, S. J. Org. Chem. 2014, 79, 9899.  doi: 10.1021/jo501995c

    117. [117]

      You, C.; Pi, C.; Wu, Y.; Cui, X. Adv. Synth. Catal. 2018, 360, 4068.  doi: 10.1002/adsc.201800659

    118. [118]

      Wang, B.; Li, C.; Liu, H. Adv. Synth. Catal. 2017, 359, 3029.  doi: 10.1002/adsc.201700484

    119. [119]

      Shibata, T.; Matsuo, Y. Adv. Synth. Catal. 2014, 356, 1516.  doi: 10.1002/adsc.201400223

    120. [120]

      Sharma, R.; Kumar, R.; Kumar, I.; Sharma, U. Eur. J. Org. Chem. 2015, 2015, 7519.  doi: 10.1002/ejoc.201501246

    121. [121]

      Li, J.; Wang, H.; Hou, Y.; Yu, W.; Xu, S.; Zhang, Y. Eur. J. Org. Chem. 2016, 2016, 2388.  doi: 10.1002/ejoc.201600332

    122. [122]

      You, C.; Yuan, T.; Huang, Y.; Pi, C.; Wu, Y.; Cui, X. Org. Biomol. Chem. 2018, 16, 4728.  doi: 10.1039/C8OB01108G

  • 加载中
    1. [1]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    2. [2]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    3. [3]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    4. [4]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    5. [5]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    6. [6]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    7. [7]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    8. [8]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    9. [9]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    10. [10]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    11. [11]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    12. [12]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    13. [13]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    14. [14]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    15. [15]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    16. [16]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    17. [17]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    18. [18]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    19. [19]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    20. [20]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

Metrics
  • PDF Downloads(160)
  • Abstract views(5428)
  • HTML views(1134)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return