Citation: Yu Shuyan, Gao Lihong, Lan Hongbing, Qian Hengyu, Yin Zhigang, Shang Yongjia. Recent Progress in the Reactions of Aurone-Derived Azadienes[J]. Chinese Journal of Organic Chemistry, ;2020, 40(9): 2714-2724. doi: 10.6023/cjoc202004034 shu

Recent Progress in the Reactions of Aurone-Derived Azadienes

  • Corresponding author: Yu Shuyan, yushuyan_zzuli@163.com Shang Yongjia, shyj@mail.ahnu.edu.cn
  • Received Date: 23 April 2020
    Revised Date: 16 May 2020
    Available Online: 29 May 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21602207) and the Foundation of Henan Educational Committee (No. 17A150022)the Foundation of Henan Educational Committee 17A150022the National Natural Science Foundation of China 21602207

Figures(20)

  • Owing to the important physiological and pharmacological activities of benzofuran compounds, the exploration for efficient synthesis methods is of great value and wide application. Aurone-derived azadienes have been identified to be effective reactants in the field of organic synthesis owing to the driving force of aromatization. A large number of reactions based on 1, 4-conjugate addition and tandem cyclization have been reported, which exhibited great advantages in the construction of heterocycles with benzofuran skeletons. In this paper, the recent progress in the chemical transformations of aurone-derived azadienens is reviewed, with emphasis on the employed catalytic system and the plausible mechanism of some reactions.
  • 加载中
    1. [1]

      Galal, S. A.; El-All, A. S. A.; Abdallah, M. M.; El-Diwani, H. I. Bioorg. Med. Chem. Lett. 2009, 19, 2420.
      (b) Shamsuzzaman, H. K. Eur. J. Med. Chem. 2015, 97, 483.
      (c) Radadiya, A.; Shah, A. Eur. J. Med. Chem. 2015, 97, 356.
      (d) Hiremathad, A.; Patil, M. R.; Chethana, K. R.; Chand, K.; Santos, M. A.; Keri, R. S. RSC Adv. 2015, 5, 96809.

    2. [2]

    3. [3]

      Gu, Z.; Zhou, J.; Jiang, G. F.; Zhou, Y. G. Org. Chem. Front. 2018, 5, 1148.  doi: 10.1039/C7QO01158J

    4. [4]

      Logusch, E. W.; Walker, D. M.; McDonaldand, J. F.; Franz, J. E. Biochemistry 1990, 29, 366.  doi: 10.1021/bi00454a009

    5. [5]

      Dunbar, K. L.; Scharf, D. H.; Litomska, A.; Hertweck, C. Chem. Rev. 2017, 117, 5521.  doi: 10.1021/acs.chemrev.6b00697

    6. [6]

      Zhou, Y. G.; Jiang, G. F.; Xie, J. J.; Gu, Z. Asian J. Org. Chem. 2018, 7, 1561.  doi: 10.1002/ajoc.201800299

    7. [7]

      Roethle, P. A.; Trauner, D. Nat. Prod. Rep. 2008, 25, 298.  doi: 10.1039/b705660p

    8. [8]

      Cui, H. L.; Huang, J. R.; Lei, J.; Wang, Z. F.; Chen, S.; Wu, L.; Chen, C. Y. Org. Lett. 2010, 12, 720.  doi: 10.1021/ol100014m

    9. [9]

      Lin, W.; Lin, X.; Cheng, Y. Y.; Chang, X. Y.; Zhou, S.; Li, P. F.; Li. W. J. Org. Chem. Front. 2019, 6, 2452.  doi: 10.1039/C9QO00597H

    10. [10]

      Li. W. J.; Lin, W.; Zhang, C.; Xu, W.; Cheng, Y. Y.; Li, P. F. Adv. Synth. Catal. 2019, 361, 476.  doi: 10.1002/adsc.201801422

    11. [11]

      Nair, V.; Thomas, S.; Mathew, S. C.; Abhilash, K. G. Tetrahedron 2006, 62, 6731.  doi: 10.1016/j.tet.2006.04.081

    12. [12]

      Xie, H. P.; Wu, B.; Wang, X. W.; Zhou, Y. G. Chin. J. Catal. 2019, 40, 1566.  doi: 10.1016/S1872-2067(19)63396-6

    13. [13]

      (a) Terada, M. Chem. Commun. 2008, 35, 4097.
      (b) Terada, M. Synthesis 2010, 1929.
      (c) Zamfir, A.; Schenker, S.; Freund, M.; Tsogoeva, S. B. Org. Biomol. Chem. 2010, 8, 5262.

    14. [14]

      Wang, C. J.; Yang, Q. Q.; Wang, M. X.; Shang, Y. H.; Tong, X. Y.; Deng, Y. H.; Shao, Z. H. Org. Chem. Front. 2020, 7, 609.  doi: 10.1039/C9QO01391A

    15. [15]

      (a) Saracoglu, N. Top. Heterocycl. Chem. 2007, 11, 145.
      (b) Kong, D.; Xue, T.; Guo, B.; Cheng, J.; Liu, S.; Wei, J.; Lu, Z.; Liu, H.; Gong, G.; Lan, T.; Hu, W.; Yang, Y. J. Med. Chem. 2019, 62, 3088.

    16. [16]

      Wang, C. S.; Li, T. Z.; Chen, Y. C.; Zhou, J.; Mei, G. J.; Shi, F. J. Org. Chem. 2019, 84, 3214.  doi: 10.1021/acs.joc.8b03004

    17. [17]

      (a) Khan, I. A.; Kulkarni, M. V.; Gopal, M.; Shahabuddin, M. S.; Sun, C. M. Bioorg. Med. Chem. Lett. 2005, 15, 3584.
      (b) Voigt, B.; Meijer, L.; Lozach, O.; Schä chtele, C.; Totzke, F.; Hilgeroth, A. Bioorg. Med. Chem. Lett. 2005, 15, 823.

    18. [18]

      Zeng, R.; Shan, C. Y.; Liu, M.; Jiang, K.; Ye, Y.; Liu, T. Y.; Chen, Y. C. Org. Lett. 2019, 21, 2312.  doi: 10.1021/acs.orglett.9b00598

    19. [19]

      Rong, Z. Q.; Wang, M.; Hao, C.; Chow, E.; Zhao, Y. Chem.-Eur. J. 2016, 22, 9483.  doi: 10.1002/chem.201601626

    20. [20]

      Gu, Z.; Wu, B.; Jiang, G. F.; Zhou, Y. G. Chin. J. Chem. 2018, 36, 1130.  doi: 10.1002/cjoc.201800330

    21. [21]

      Li, X. P.; Yan, J. Z.; Qin, J. L.; Lin, S. L.; Chen, W. W.; Zhan, R. T.; Huang, H. C. J. Org. Chem. 2019, 84, 8035.  doi: 10.1021/acs.joc.9b00911

    22. [22]

      Chen, J. L.; Jia, P. H.; Huang, Y. Org. Lett. 2018, 20, 6715.  doi: 10.1021/acs.orglett.8b02810

    23. [23]

      Allen, A. D.; Tidwell, T. T. Chem. Rev. 2013, 113, 7287.  doi: 10.1021/cr3005263

    24. [24]

      Bernardim, B.; Hardman-Baldwin, A. M.; Burtoloso, A. C. B. RSC Adv. 2015, 5, 13311.  doi: 10.1039/C4RA15670F

    25. [25]

      Tan, T.; Zhang, Z. J.; Zhang, Y. C.; Song, J. Org. Lett. 2019, 21, 7897.  doi: 10.1021/acs.orglett.9b02892

    26. [26]

      Xie, H. P.; Sun, L.; Wu, B.; Zhou, Y. G. J. Org. Chem. 2019, 84, 15498.  doi: 10.1021/acs.joc.9b02512

    27. [27]

      (a) Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic Chemistry, Higher Education Press, Beijing, 2009.
      (b) Tomasi, S.; Renault, J.; Martin, B.; Duhieu, S.; Cerec, V.; LeRoch, M.; Uriac, P.; Delcros, J. G. J. Med. Chem. 2010, 53, 7647.
      (c) Freidinger, R. M. J. Med. Chem. 2003, 46, 5553.
      (d) Pegoraro, S.; Lang, M.; Dreker, T.; Kraus, J.; Hamm, S.; Meere, C.; Feurle, J.; Tasler, S.; Prütting, S.; Kura, Z.; Visan, V.; Grissmer, S. Bioorg. Med. Chem. Lett. 2009, 19, 2299.

    28. [28]

      (a) Xie, P.; Huang, Y. Org. Biomol. Chem. 2015, 13, 8578.
      (b) Wang, Z.; Xu, X.; Kwon, O. Chem. Soc. Rev. 2014, 43, 2927.
      (c) Zhao, Q. Y.; Lian, Z.; Wei, Y.; Shi, M. Chem. Commun. 2012, 48, 1724.
      (d) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535.

    29. [29]

      Chen, J. L.; Huang, Y. Org. Lett. 2017, 19, 5609.  doi: 10.1021/acs.orglett.7b02742

    30. [30]

      (a) Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606.
      (b) Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. Nature 2014, 510, 485.
      (c) Bugaut, X.; Glorius, F. Chem. Soc. Rev. 2012, 41, 3511.
      (d) Grossmann, D. A.; Enders, D. Angew. Chem.. Int. Ed. 2012, 51, 314.

    31. [31]

      Gao, Z. H.; Chen, K. Q.; Zhang, Y.; Kong, L. M.; Li, Y.; Ye, S. J. Org. Chem. 2018, 83, 15225.  doi: 10.1021/acs.joc.8b02497

    32. [32]

      Chen, K. Q.; Gao, Z. H.; Ye, S. Org. Chem. Front. 2019, 6, 405.  doi: 10.1039/C8QO01302K

    33. [33]

      (a) Trost, B. M. Angew. Chem.. Int. Ed. 1986, 25, 1.
      (b) Trost, B. M. Pure Appl. Chem. 1988, 60, 1615.

    34. [34]

      Shintani, R.; Park, S.; Duan, W. L.; Hayashi, T. Angew. Chem.. Int. Ed. 2007, 46, 5901.  doi: 10.1002/anie.200701529

    35. [35]

      Trost, B. M.; Zuo, Z. J. Angew. Chem.. Int. Ed. 2020, 59, 1243.  doi: 10.1002/anie.201911537

    36. [36]

      (a) Hussain, A.; Yousuf, S. K.; Mukherjee, D. RSC Adv. 2014, 4, 43241.
      (b) Faulkner, D. J. Nat. Prod. Rep. 1984, 1, 251.
      (c) Mallinson, J.; Collins, I. Future Med. Chem. 2012, 4, 1409.
      (d) Brown, H. C.; Fletcher, R. S.; Johannesen, R. B. J. Am. Chem. Soc. 1951, 73, 212.
      (e) Prelog, V. Pure Appl. Chem. 1963, 6, 545.

    37. [37]

      Ni, H. Z.; Tang, X. D.; Zheng, W. R.; Yao, W. J.; Ullah, N.; Lu, Y. X. Angew. Chem.. Int. Ed. 2017, 56, 14222.  doi: 10.1002/anie.201707183

    38. [38]

      (a) Evans, A. E.; Farber, S.; Brunet, S.; Mariano, P. J. Cancer 1963, 16, 1302.
      (b) Armstrong, J. G.; Dyke, R. W.; Fouts, P. J. Science 1964, 143, 703.
      (c) Shimokawa, T.; Kinjo, J.; Yamahara, J.; Yamasaki, M.; Nohara, T. Chem. Pharm. Bull. 1985, 33, 3545.

    39. [39]

      Yang, L. C.; Rong, Z. Q.; Wang, Y. N.; Tan, Z. Y.; Wang, M.; Zhao, Y. Angew. Chem.. Int. Ed. 2017, 56, 2927.  doi: 10.1002/anie.201611474

    40. [40]

      Rong, Z. Q.; Yang, L. C.; Liu, S.; Yu, Z. Y.; Wang, Y. N.; Tan, Z. Y.; Huang, R. Z.; Lan, Y.; Zhao, Y. J. Am. Chem. Soc. 2017, 139, 15304.  doi: 10.1021/jacs.7b09161

    41. [41]

      Wang, Y. N.; Yang, L. C.; Rong, Z. Q.; Liu, T. L.; Liu, R. Y.; Zhao, Y. Angew. Chem.. Int. Ed. 2018, 57, 1596.  doi: 10.1002/anie.201711648

    42. [42]

      (a) Lee, S. H.; Seo, H. J.; Lee, S. H.; Jung, M. E.; Park, J. H.; Park, H. J.; Yoo, J.; Yun, H.; Na, J.; Kang, S. Y.; Song, K. S.; Kim, M.; Chang, C. H.; Kim, J.; Lee, J. J. Med. Chem. 2008, 51, 7216.
      (b) Bilich, A.; Winther, M. D. Chem. Abstr. 2008, 149, 556638.
      (c) Barnes-Seeman, D.; Jain, M.; Bell, L.; Ferreira, S.; Cohen, S.; Chen, X. H.; Amin, J.; Snodgrass, B.; Hatsis, P. ACS Med. Chem. Lett. 2013, 4, 514.
      (d) Bezençon, O.; Heidmann, B.; Siegrist, R.; Stamm, S.; Richard, S.; Pozzi, D.; Corminboeuf, O.; Roch, C.; Kessler, M.; Ertel, E. A.; Reymond, I.; Pfeifer, T.; de Kanter, R.; Toeroek-Schafroth, M.; Moccia, L. G.; Mawet, J.; Moon, R.; Rey, M.; Capeleto, B.; Fournier, E. J. Med. Chem. 2017, 60, 9769.

    43. [43]

      Bos, M.; Poisson, T.; Pannecoucke, X.; Charette, A. B.; Jubault, P. Eur. J. Chem. 2017, 23, 495.

    44. [44]

      Chen, T.; Zhang, Y.; Fu, Z. Q.; Huang, W. Asian J. Org. Chem. 2019, 8, 2175.  doi: 10.1002/ajoc.201900651

    45. [45]

      Marques, A. S.; Duhail, T.; Marrot, J.; Chataigner, I.; Coeffard, V.; Vincent, G.; Moreau, X. Angew. Chem.. Int. Ed. 2019, 58, 9969.  doi: 10.1002/anie.201903860

    46. [46]

      Qi, J. F.; Tang, H. B.; Chen, C. W.; Cui, S. L.; Xu, G. Org. Chem. Front. 2019, 6, 2760.  doi: 10.1039/C9QO00653B

  • 加载中
    1. [1]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    2. [2]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    3. [3]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    4. [4]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    5. [5]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    6. [6]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    7. [7]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    8. [8]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    9. [9]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    10. [10]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    11. [11]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    12. [12]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    13. [13]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    14. [14]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    15. [15]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    16. [16]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    17. [17]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    18. [18]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    19. [19]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    20. [20]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

Metrics
  • PDF Downloads(16)
  • Abstract views(1429)
  • HTML views(384)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return