Citation: Wang Hui, Wang Anwei, Xia Zhenzhen, Zhou Weiyou, Sun Zhonghua, Qian Junfeng, He Mingyang. Nickel(Ⅱ)-Catalyzed Aerobic Cross-Dehydrogenative Coupling for the Synthesis of N-Aryl Tetrahydroisoquinolines[J]. Chinese Journal of Organic Chemistry, ;2020, 40(7): 2099-2107. doi: 10.6023/cjoc202004028 shu

Nickel(Ⅱ)-Catalyzed Aerobic Cross-Dehydrogenative Coupling for the Synthesis of N-Aryl Tetrahydroisoquinolines

  • Corresponding author: Zhou Weiyou, zhouwy426@126.com
  • Received Date: 18 April 2020
    Revised Date: 4 May 2020
    Available Online: 15 May 2020

    Fund Project: the Natural Science Foundation of Jiangsu Province No. BK20181461the Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology No. BM2012110the Postgraduate Research & Practice Innovation Program of Jiangsu Province No. KYCX19_1746Project supported by the Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology (No. BM2012110), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX19_1746), and the Natural Science Foundation of Jiangsu Province (No. BK20181461)

Figures(1)

  • An nickel-catalyzed aerobic cross-dehydrogenative coupling of N-aryl tetrahydroisoquinolines is presented. The catalytic system could tolerate various N-aryl tetrahydroquinoline derivatives and nucleophiles, and the target products could be obtained in good to excellent yields. Compared with reported methods, the protocol uses molecular oxygen as a sustainable oxidant, and provides an effective approach to the synthesis of tetrahydroisoquinoline derivatives under mild and practical conditions.
  • 加载中
    1. [1]

      (a) Mons, E.; Wanner, M. J.; Ingemann, S.; van Maarseveen, J. H.; Hiemstra, H. J. Org. Chem. 2014, 79, 7380.
      (b) Aladesanmi, A. J.; Kelley, C. J.; Leary, J. D. J. Nat. Prod.1983, 46, 127.
      (c) Chrzanowska, M.; Rozwadowska, M. D. Chem. Rev. 2004, 104, 3341.
      (d) Ye, K.; Ke, Y.; Keshava, N.; Shanks, J.; Kapp, J. A.; Tekmal, R. R.; Petros, J.; Joshi, H. C. Proc. Natl. Acad. Sci. U.S. A. 1998, 95, 1601.
      (e) Zhang, A.; Neumeyer, J. L.; Baldessarini, R. J. Chem. Rev. 2007, 107, 274.
      (f) Pandey, G.; Tiwari, S. K.; Singh, B. Tetrahedron Lett. 2016, 57, 4480.
      (g) Tsang, A. S. K.; Ingram, K.; Keiser, J.; Hibbert, D. B.; Todd, M. H. Org.Biomol. Chem. 2013, 11, 4921.
      (h) Zhang, G.; Zhang, Y.; Wang, R. Angew. Chem., Int. Ed.2011, 50, 10429.
      (i) Gao, M.; Kong, D.; Clearfield, A.; Zheng, Q. H. Bioorg. Med. Chem.Lett. 2006, 16, 2229.

    2. [2]

    3. [3]

      (a) Li, Z. P.; Li, C. J. J. Am. Chem.Soc. 2004, 126, 11810.
      (b) Li, Z. P.; Li, C. J. Eur. J. Org. Chem. 2005, 44, 3173.
      (c) Li, Z. P.; Li, C. J. Org. Lett. 2004, 6, 4997.
      (d) Li, Z. P.; Li, C. J. J. Am. Chem. Soc. 2005, 127, 3672.
      (e) Baslé, O.; Li, C. J. Chem. Commun. 2009, 27, 4124.
      (f) Baslé, O.; Li, C. J. Green Chem. 2007, 9, 1047.
      (g) Baslé, O.; Borduas, N.; Dubois, P.; Chapuzet, J. M.; Chan, T. H.; Lessard, J.; Li, C. J. Chem. Eur. J. 2010, 16, 8162.
      (h) Li, Z. P.; MacLeod, P. D.; Li, C. J. Tetrahedron: Asymmetry 2006, 17, 590.

    4. [4]

      (a) Liu, P.; Zhou, C. Y.; Xiang, S.; Che, C. M. Chem.Commun. 2010, 46, 2739.
      (b) Shu, X. Z.; Xia, X. F.; Yang, Y. F.; Ji, K. G.; Liu, X. Y.; Liang, Y. M. J.Org. Chem. 2009, 74, 7464.
      (c) Alagiri, K.; Kumara, G. S. R.; Prabhu, K. R. Chem. Commun. 2011, 47, 11787.
      (d) Sonobe, T.; Oisaki, K.; Kanai, M. Chem. Sci. 2012, 3, 3249.
      (e) Ghobrial, M.; Schnürch, M.; Mihovilovic, M. D. J. Org. Chem.2011, 76, 8781.
      (f). Volla, C. M. R.; Vogel, P. Org. Lett. 2009, 11, 1701.

    5. [5]

      For recent selected examples, see:
      (a) Boess, E.; Schmitz, C.; Klussmann, M. J. Am. Chem. Soc.2012, 134, 5317.
      (b) Zhang, W.; Yang, S. P.; Shen, Z. M. Adv. Synth. Catal.2016, 358, 2392.
      (c) Wang, T.; Schrempp, M.; Berndhäuser, A.; Schiemann, O.; Menche, D. Org.Lett. 2015, 17, 3982.
      (d) Zhang, G.; Ma, Y. X.; Wang, S. L.; Zhang, Y. H.; Wang, R. J. Am.Chem. Soc. 2012, 134, 12334.
      (e) Li, Z. P.; Bohle, D. S.; Li, C. J. Proc. Natl. Acad. Sci.2006, 103, 8928.
      (f) Liu, Y. X.; Wang, C.; Xue, D.; Xiao, M.; Li, C. Q.; Xiao, J. L. Chem.-Eur.J. 2017, 23, 3051.

    6. [6]

      (a) Brzozowski, M.; Forni, J. A.; Savage, G. P.; Polyzos, A. Chem. Commun. 2015, 51, 334.
      (b) Ratnikov, M. O.; Xu, X. F.; Doyle, M. P. J. Am. Chem. Soc.2013, 135, 9475.
      (c) Huang, T. Y.; Liu, X. H.; Lang, J. W.; Xu, J.; Lin, L. L.; Feng, X. M. ACS Catal. 2017, 135, 5654.

    7. [7]

    8. [8]

      Xie, J.; Li, H. M.; Zhou, J. C.; Cheng, Y. X.; Zhu, C. J. Angew. Chem., Int. Ed. 2012, 51, 1252.

    9. [9]

      Ratnikov, M. O.; Doyle, M. P. J. Am.Chem. Soc. 2013, 135, 1549.

    10. [10]

      Patil, M. R.; Dedhia, N. P.; Kapdi, A. R.; Vijay Kumar, A. J.Org. Chem. 2018, 83, 4477.

    11. [11]

    12. [12]

      Zhou, S. B.; Wang, J.; Lin, D. Z.; Zhao, F.; Liu, H. J. Org.Chem. 2013, 78, 11204.

    13. [13]

      Kumar, P.; Sharma, A. K.; Singh, R.; Guntreddi, T. W.; Singh, K. N. Adv.Synth. Catal. 2018, 360, 1786.

    14. [14]

      (a) Jin, L. K; Wan, L.; Feng, J.; Cai, C. Org. Lett. 2015, 17, 4726.
      (b) Li, Z. L.; Sun, K. K.; Cai, C. Org. Lett. 2018, 20, 6420.

    15. [15]

      Li, Z. L.; Wu, P. Y.; Sun, K. K.; Cai, C. New J. Chem.2019, 43, 12152.

    16. [16]

      Whittaker, A. M.; Dong, V. M. Angew. Chem., Int.Ed. 2015, 54, 1312.

    17. [17]

      Wang, X.; Xie, P. P.; Qiu, R. H.; Zhu, L. Z.; Liu, T.; Li, Y.; Iwasaki, T.; Au, C. T.; Xu, X. H.; Xia, Y. Z.; Yin, S. F.; Kambe, N. Chem. Commun.2017, 53, 8316.

    18. [18]

      Kawasaki, T.; Ishida, N.; Murakami, M. J. Am. Chem.Soc. 2020, 142, 3366.

    19. [19]

      Verheyen, T.; van Turnhout, L.; Vandavasi, J. K.; Isbrandt, E. S.; De Borggraeve, W. M.; Newman, S. G. J. Am. Chem. Soc. 2019, 141, 6869.

    20. [20]

      Zhong, J. J.; Meng, Q. Y.; Wang, G. X.; Liu, Q.; Chen, B.; Feng, K.; Tung, C. H.; Wu, L. Z. Chem. Eur. J. 2013, 19, 6443.

    21. [21]

      Shi, L.; Wang, M.; Fan, C. A.; Zhang, F. M.; Tu, Y. Q. Org. Lett.2003, 5, 3515.

    22. [22]

      Jiang, J. X.; Li, Y. Y.; Wu, X. F.; Xiao, J. L.; Adams, D. J.; Cooper, A. I. Macromolecules 2013, 46, 8779.

    23. [23]

      Liu, Q.; Li, Y. N.; Zhang, H. H.; Chen, B.; Tung, C. H.; Wu, L. Z. Chem.-Eur.J. 2012, 18, 620.

    24. [24]

      Sharma, K.; Borah, A.; Neog, K.; Gogoi, P. ChemistrySelect 2016, 1, 4620.

    25. [25]

      Cherevatskaya, M.; Neumann, M.; Füldner, S.; Harlander, C.; Kümmel, S.; Dankesreiter, S.; Pfitzner, A.; Zeitler, K.; König, B. Angew. Chem., Int. Ed. 2012, 51, 4062.

    26. [26]

      Periasamy, M.; Shanmugaraja, M.; Reddy, P. O.; Ramusagar, M.; Rao, G. A. J. Org. Chem. 2017, 82, 4944.

  • 加载中
    1. [1]

      Fa Wang Yu Chen Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024

    2. [2]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    3. [3]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    4. [4]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    5. [5]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    6. [6]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    7. [7]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    8. [8]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    9. [9]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    10. [10]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    11. [11]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    12. [12]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    13. [13]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    14. [14]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    15. [15]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    16. [16]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    17. [17]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    18. [18]

      Jiying Liu Zehua Li Wenjing Zhang Donghui Wei . Molecular Orbital and Nucleus-Independent Chemical Shift Calculations for C6H6 and B12H122-: A Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 186-192. doi: 10.12461/PKU.DXHX202406085

    19. [19]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    20. [20]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

Metrics
  • PDF Downloads(8)
  • Abstract views(997)
  • HTML views(155)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return