Citation: Liu Lingling, Yang Shan, Han Yi, Dai Chenyang, Shi Daqing, Huang Zhibin, Zhao Yingsheng. Rhodium-Catalyzed ortho-Alkenylation of Phenols Directed by Acetone Oxime Ether[J]. Chinese Journal of Organic Chemistry, ;2020, 40(8): 2394-2401. doi: 10.6023/cjoc202004019 shu

Rhodium-Catalyzed ortho-Alkenylation of Phenols Directed by Acetone Oxime Ether

  • Corresponding author: Huang Zhibin, zbhuang@suda.edu.cn Zhao Yingsheng, yszhao@suda.edu.cn
  • Received Date: 13 April 2020
    Revised Date: 22 May 2020
    Available Online: 29 May 2020

    Fund Project: National Natural Science Foundation of China 21572149Major Basic Research Project of the Natural Science Foundation of Jiangsu Higher Education Institutions 15KJA150006Project of Scientific and Technologic Infrasracture of Suzhou SZS2018201708Project supported by the National Natural Science Foundation of China (Nos. 21772139, 21572149), the Major Basic Research Project of the Natural Science Foundation of Jiangsu Higher Education Institutions (Nos. 15KJA150006, 17KJA150006), the Jiangsu Province Natural Science Found for Distinguished Young Scholars (No. BK2018g0041), the Project of Scientific and Technologic Infrasracture of Suzhou (No. SZS2018201708) and the Priority Academic Program Development of Jiangsu Higher Education Institutions ProjectJiangsu Province Natural Science Found for Distinguished Young Scholars BK2018g0041National Natural Science Foundation of China 21772139Major Basic Research Project of the Natural Science Foundation of Jiangsu Higher Education Institutions 17KJA150006

Figures(3)

  • A practical rhodium-catalyzed highly regioselective ortho-alkenylation of phenolic compound under the assistance of weak coordination center acetoxime ether was developed. This strategy has advantages of simple and mild reaction conditions, wide scope of substrate and high regioselectivity. This protocol provids an efficient and new method for the regioselective ortho-alkenylation of phenols.
  • 加载中
    1. [1]

      (a) Zhou P. P., Guan M. Y., Zhang J. Y., Xu F., Zhao Y. S.Chin. J. Org. Chem., 2017, 37: 2028(in Chinese).
      (b) Zheng Y. X., Han J., Huang Z. B., Shi D. Q., Zhao Y. S.Chin. J. Org. Chem., 2017, 37: 2066(in Chinese).
      (c) Shang X. J., Liu Z. Q.Chin. J. Org. Chem., 2015, 35: 522(in Chinese).
      (d) Luo F. H., Long Y., Li Z. K., Zhou X. G.Acta Chim. Sinica, 2016, 74: 805(in Chinese).

    2. [2]

      (a) Gou Q., Tan X. P., Zhang M. Z., Ran M., Yuan T. R., He S. H., Zhou L. Z., Cao T. W., Luo F. H.Org. Lett., 2020, 22: 1966.
      (b) Dai J.-L., Shao N.-Q., Zhang J., Jia R.-P., Wang D.-H.J. Am. Chem. Soc., 2017, 139: 12393.
      (c) Fabry D. C., Ronge M. A., Zoller J., Rueping M.Angew. Chem., Int. Ed., 2015, 54: 2801.
      (d) Zhang L., Zhu L., Zhang Y., Yang Y., Wu Y., Ma W., Lan Y., You J.ACS Catal., 2018, 8. 8324.
      (e) Khaefa S., Rostamic A., Khakyzadehd V., Zolfigolb M. A., Taherpoura A. A., Yarieb M.Mol. Catal., 2020, 484: 110772.

    3. [3]

      Boele M. D. K., van Strijdonck G. P. F., de Vries A. H. M., Kamer P. C. J., de Veries J.-G.; van Leeuwen P. W. N. M.J. Am. Chem. Soc., 2002, 124:1586.

    4. [4]

      Beck E. M., Grimster N. P., Hatley R., Gaunt M. J.J. Am. Chem. Soc., 2006, 128:2528.

    5. [5]

      Wu J. L., Cui X. L., Chen L. M., Jiang G. J., Wu Y. G.J. Am. Chem. Soc., 2009, 131:13888.

    6. [6]

      Wang D. H., Engle K. M., Shi B.-F., Yu J.-Q.Science, 2010, 327:315.

    7. [7]

      Xu W. T., Wang N., Zhang M. Y., Shi D. Q.Chin. J. Org. Chem., 2019, 39:1735(in Chinese).
       

    8. [8]

      Ackermann L., Pospech J.Org. Lett., 2011, 13:4153.

    9. [9]

      Padala K., Jeganmohan M.Org. Lett., 2011, 13:6144.

    10. [10]

      Hashimoto Y., Hirano K., Satoh T., Kakiuchi F., Miura M.Org. Lett., 2012, 14:2058.

    11. [11]

      Manikandan R., Madasamy P., Jeganmohan M.ACS Catal., 2016, 6:230.

    12. [12]

      Dana S., Mandal A., Sahoo H., Mallik S., Grandhi G.-S., Baidya M.Org. Lett., 2018, 20:716.

    13. [13]

      Patureau F. W., Glorius F.J. Am. Chem. Soc., 2010, 132:9982.

    14. [14]

      Yin B., Fu M.-L., Zhu Q.Chin. J. Org. Chem., 2020, 40:1461(in Chinese).
       

    15. [15]

      Wang C. M., Chen H., Wang Z. F., Chen J. A., Huang Y.Angew. Chem., Int. Ed., 2012, 51:7242.

    16. [16]

      Kona C. N., Nishii Y., Miura M.Org. Lett., 2018, 20:4898.

    17. [17]

      Gan F. F., Chua Y. S., Scarmagnani S., Palaniappan P., Franks M., Poobalasingam T., Bradshaw T. D., Westwell A. D., Hagen T.Res. Commun., 2009, 387:741.

    18. [18]

      Tyman J. H. P.Synthetic and Natural Phenols, Elsevier, New York, , 1996.

    19. [19]

      Finkelstein B. L., Benner E. A., Hendrixson M. C., Kranis K. T., Rauh J. J., Sethuraman M. R., McCann S. F.Bioorg. Med. Chem., 2002, 10:599.

    20. [20]

      Martín Castro A. M.Chem. Rev., 2004, 104:2939.

    21. [21]

      (a) Reddy M. C., Jeganmohan M.Eur. J. Org. Chem., 2013, 1150.(b) Li B., Ma J., Liang Y., Wang N., Xu S., Song H., Wang B.Eur. J. Org. Chem., 2013, 1950.(c) Dai H.-X., Li G., Zhang X.-G., Stepan A. F., Yu J.-Q.J. Am. Chem. Soc., 2013, 135: 7567.

    22. [22]

      Huang C. H., Chattopadhyay B., Gevorgyan V.J. Am. Chem. Soc., 2011, 133:12406.

    23. [23]

      Gong T.-J., Xiao B., Liu Z.-J., Wan J., Xu J., Luo D.-F., Fu Y., Liu L.Org. Lett., 2011, 13:3235.

    24. [24]

      Shen Y. Y., Liu G. X., Zhou Z., Lu X. Y.Org. Lett., 2013, 15:3366.

    25. [25]

      Bolotin D. S., Bokach N. A., Demakova M. Y., Kukushkin V. Y., Chem. Rev., 2017, 117:13039.

    26. [26]

      Singh N., Karpichev Y., Tiwari A. K., Kuca K., Ghosh K. K., J. Mol. Liq., 2015, 208:307.

    27. [27]

      Worek F., Thiermann H., Wille T.Chem.-Biol. Interact., 2016, 259:93.

    28. [28]

      Guo K., Chen X. L., Guan M. Y., Zhao Y. S.Org. Lett., 2015, 17:1802.

    29. [29]

      Liu L. L., Wang N., Dai C. Y., Han Y., Yang S., Huang Z. B., Zhao Y. S.Eur. J. Org. Chem., 2019, 7857.

    30. [30]

      Wang N., Liu L. L., Xu W. T., Zhang M. Y., Huang Z. B., Shi D. Q., Zhao Y. S.Org. Lett., 2019, 21:365.

    31. [31]

      Zhou B., Chen Z. Q., Yang Y. X., Ai W., Tang H. Y., Wu Y. X., Zhu W. L., Li Y. C.Angew. Chem., Int. Ed., 2015, 54:12121.

    32. [32]

      Xie F., Qi Z. S., Yu S. J., Li X. W.J. Am. Chem. Soc., 2014, 136:4780.

    33. [33]

      Asaumi T., Matsuo T., Fukuyama T., Ie Y., Kakiuchi F., Chatani N.J. Org. Chem., 2004, 69:4433.

    34. [34]

      Hyster T. K., Rovis T.J. Am. Chem. Soc., 2010, 132:10565.

    35. [35]

      Liu B., Fan Y., Gao Y., Sun C., Xu C., Zhu J.J. Am. Chem. Soc., 2013, 135:468.

    36. [36]

      Xu L., Zhu Q., Huang G., Cheng B., Xia Y.J. Org. Chem., 2012, 77:3017.

    37. [37]

      Takeda N., Miyata O., Naito T.Eur. J. Org. Chem., 2007, 1491.

    38. [38]

      Rao M. L. N., Ramakrishna B. S.J. Org. Chem., 2019, 84:5677.

    39. [39]

      Liu B., Jiang H. Z., Shi B. F.J. Org. Chem., 2014, 79:1521.

    40. [40]

      Chen J. M., Liu W., Zhou L. D., Zhao Y. L.Tetrahedron Lett., 2018, 59:2526.

    41. [41]

      Ribeiro Laia F. M., Pinho e Melo T. M. V. D.Synthesis 2015, 47, 2781.

    42. [42]

      Jiang Q., Xu B., Jia J., Zhao A., Zhao Y. R., Li Y. Y., He N. N., Guo C. C.J. Org. Chem., 2014, 79:7372.

  • 加载中
    1. [1]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    2. [2]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    3. [3]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    4. [4]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    5. [5]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    6. [6]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    7. [7]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    8. [8]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    9. [9]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    10. [10]

      Hongmei Chai Yixia Ren Xiangyang Hou Long Tang Jiawei Xie . 智能手机光传感的“丙酮碘化反应”实验改进. University Chemistry, 2025, 40(6): 193-200. doi: 10.12461/PKU.DXHX202407086

    11. [11]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    12. [12]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    13. [13]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    14. [14]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    15. [15]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    18. [18]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    19. [19]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    20. [20]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

Metrics
  • PDF Downloads(1)
  • Abstract views(1242)
  • HTML views(116)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return