Citation: Fang Xiaolong, Duan Ning, Zhang Min, Li Bin. Advances for Ruthenium Catalysts with Metal-Ligand Cooperation for Hydrogenation of Oxalates into Ethylene Glycol[J]. Chinese Journal of Organic Chemistry, ;2020, 40(9): 2692-2701. doi: 10.6023/cjoc202004017 shu

Advances for Ruthenium Catalysts with Metal-Ligand Cooperation for Hydrogenation of Oxalates into Ethylene Glycol

  • Corresponding author: Fang Xiaolong, xlfang@stu.xmu.edu.cn Li Bin, binlee@stu.xmu.edu.cn
  • Received Date: 12 April 2020
    Revised Date: 9 May 2020
    Available Online: 27 May 2020

    Fund Project: the Natural Science Foundation of Anhui Province 1808085QB48Project supported by the National Natural Science Foundation of China (No. 21802010) and the Natural Science Foundation of Anhui Province (No. 1808085QB48)the National Natural Science Foundation of China 21802010

Figures(8)

  • Ethylene glycol (EG) is an important fundamental chemical material, which has been widely used in the production of industrial chemicals such as polyester. Catalytic hydrogenation of oxalate into EG is a key step in the "coal-to-EG" industrial route. Design of efficient catalysts for catalyzing the hydrogenation of oxalate esters is a research hotspot. The research progress of ruthenium catalysts with metal-ligand cooperation in the homogeneous catalytic hydrogenation of oxalate esters in the past decade is reviewed. Based on the relationship between the catalyst structures and properties, the catalytic hydrogenation mechanism is discussed, which provides a reference for the further design and development of new catalysts with excellent performance.
  • 加载中
    1. [1]

      Chen, L.; Guo, P.; Qiao, M.; Yan, S.; Li, H.; Wei, S.; Xu, H.; Fan, K. J. Catal. 2008, 257, 172.  doi: 10.1016/j.jcat.2008.04.021

    2. [2]

      Yin, G. Sino-Global Energy 2012, 17, 62 (in Chinese).

    3. [3]

    4. [4]

      (a) Zheng, J.; Lin, H.; Wang, Y.; Zheng, X.; Duan, X.; Yuan, Y. J. Catal. 2013, 297, 110.
      (b) He, Z.; Lin, H.; He, P.; Yuan, Y. J. Catal. 2011, 277, 54.
      (c) Xu, C.; Chen, G.; Zhao, Y.; Liu, P.; Duan, X.; Gu, L.; Fu, G.; Yuan, Y.; Zheng, N. Nat. Commun. 2018, 9, 3367.

    5. [5]

      Grey, R. A.; Pez, G. P.; Wallo, A. J. Am. Chem. Soc. 1981, 103, 7536.  doi: 10.1021/ja00415a022

    6. [6]

      (a) Turek, T.; Trimm, D. L.; Cant, N. W. Catal. Rev.: Sci. Eng. 1994, 36, 645.
      (b) Pouilloux, Y.; Autin, F.; Barrault, J. Catal. Today 2000, 63, 87.
      (c) Wang, H.; Zhang, T.; Zhou, X. J. Phys.: Condens. Matter 2019, 31, 473001.

    7. [7]

      Grey, R. A.; Pez, G. P.; Wallo, A.; Corsi, J. J. Chem. Soc., Chem. Commun. 1980, 783.

    8. [8]

      Matteoli, U.; Blanchi, M.; Menchi, G.; Prediani, P.; Piacenti, F. J. Mol. Catal. 1984, 22, 353.  doi: 10.1016/0304-5102(84)80075-9

    9. [9]

      (a) Matteoli, U.; Bianchi, M.; Menchi, G.; Frediani, P.; Piacenti, F. J. Mol. Catal. 1985, 29, 269.
      (b) Matteoli, U.; Menchi, G.; Bianchi, M.; Piacenti, F. J. Organomet. Chem. 1986, 299, 233.

    10. [10]

      Teunissen, H. T.; J. Elsevier, C. Chem. Commun. 1997, 667.

    11. [11]

      (a) Teunissen, H. T. Chem. Commun. 1998, 1367.
      (b) van Engelen, M. C.; Teunissen, H. T.; de Vries, J. G.; Elsevier, C. J. J. Mol. Catal. A: Chem. 2003, 206, 185.

    12. [12]

      Boardman, B.; Hanton, M. J.; Rensburg, H. V.; Tooze, R. P. Chem. Commun. 2006, 2289.

    13. [13]

      Ohkuma, T.; Ooka, H.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 10417.  doi: 10.1021/ja00146a041

    14. [14]

      (a) Doucet, H.; Ohkuma, T.; Murata, K.; Yokozawa, T.; Kozawa, M.; Katayama, E.; England, A. F.; Ikariya, T.; Noyori, R. Angew. Chem., Int. Ed. 1998, 37, 1703.
      (b) Abdur-Rashid, K.; Clapham, S. E.; Hadzovic, A.; Harvey, J. N.; Lough, A. J.; Morris, R. H. J. Am. Chem. Soc. 2002, 124, 15104.
      (c) Sandoval, C. A.; Ohkuma, T.; Muñiz, K.; Noyori, R. J. Am. Chem. Soc. 2003, 125, 13490.
      (d) Ikariya, T.; Murata, K.; Noyori, R. Org. Biomol. Chem. 2006, 4, 393.
      (e) Dub, P. A.; Gordon, J. C. Nat. Rev. Chem. 2018, 2, 396.

    15. [15]

      (a) Clapham, S. E.; Hadzovic, A.; Morris, R. H. Coord. Chem. Rev. 2004, 248, 2201.
      (b) vom Stein, T.; Meuresch, M.; Limper, D.; Schmitz, M.; Hölscher, M.; Coetzee, J.; Cole-Hamilton, D. J.; Klankermayer, J.; Leitner, W. J. Am. Chem. Soc. 2014, 136, 13217.
      (c) Liu, Y.; Yue, X.; Luo, C.; Zhang, L.; Lei, M. Energy Environ. Mater. 2019, 2, 292.

    16. [16]

      (a) Dub, P. A.; Ikariya, T. ACS Catal. 2012, 2, 1718.
      (b) Zhao, B.; Han, Z.; Ding, K. Angew. Chem., Int. Ed. 2013, 52, 4744.
      (c) Werkmeister, S.; Junge, K.; Beller, M. Org. Process Res. Dev. 2014, 18, 289.
      (d) Pritchard, J.; Filonenko, G. A.; van Putten, R.; Hensen, E. J. M.; Pidko, E. A. Chem. Soc. Rev. 2015, 44, 3808.
      (e) Zhou, Y.; Khan, R.; Fan, B.; Xu, L. Synthesis 2019, 51, 2491.
      (f) Dub, P. A.; Batrice, R. J.; Gordon, J. C.; Scott, B. L.; Minko, Y.; Schmidt, J. G.; Williams, R. F. Org. Process Res. Dev. 2020, 24, 415.

    17. [17]

      Saudan, L. A.; Saudan, C. M.; Debieux, C.; Wyss, P. Angew. Chem., Int. Ed. 2007, 46, 7473.  doi: 10.1002/anie.200701015

    18. [18]

      (a) Kuriyama, W.; Matsumoto, T.; Ogata, O.; Ino, Y.; Aoki, K.; Tanaka, S.; Ishida, K.; Kobayashi, T.; Sayo, N.; Saito, T. Org. Process Res. Dev. 2012, 16, 166.
      (b) Han, Z.; Rong, L.; Wu, J.; Zhang, L.; Wang, Z.; Ding, K. Angew. Chem., Int. Ed. 2012, 51, 13041.

    19. [19]

      Ziebart, C.; Jackstell, R.; Beller, M. ChemCatChem 2013, 5.

    20. [20]

      Spasyuk, D.; Smith, S.; Gusev, D. G. Angew. Chem., Int. Ed. 2012, 51, 2772.  doi: 10.1002/anie.201108956

    21. [21]

    22. [22]

      (a) Abdur-Rashid, K.; Faatz, M.; Lough, A. J.; Morris, R. H. J. Am. Chem. Soc. 2001, 123, 7473.
      (b) Hartmann, R.; Chen, P. Angew. Chem., Int. Ed. 2001, 40, 3581.

    23. [23]

      Li, W.; Xie, J. H.; Yuan, M. L.; Zhou, Q. L. Green Chem. 2014, 16, 4081.  doi: 10.1039/C4GC00835A

    24. [24]

    25. [25]

      Noyori, R.; Ohkuma, T. Angew. Chem., Int. Ed. 2001, 40, 40.  doi: 10.1002/1521-3773(20010105)40:1<40::AID-ANIE40>3.0.CO;2-5

    26. [26]

      (a) Abdur-Rashid, K.; Guo, R.; Lough, A. J.; Morris, R. H.; Song, D. Adv. Synth. Catal. 2005, 347, 571.
      (b) Jia, W.; Chen, X.; Guo, R.; Sui-Seng, C.; Amoroso, D.; Lough, A. J.; Abdur-Rashid, K. Dalton Trans. 2009, 39, 8301.

    27. [27]

      (a) Drake, J. L.; Manna, C. M.; Byers, J. A. Organometallics 2013, 32, 6891.
      (b) Spasyuk, D.; Smith, S.; Gusev, D. G. Angew. Chem., Int. Ed. 2013, 52, 2538.
      (c) Moore, C. M.; Bark, B.; Szymczak, N. K. ACS Catal. 2016, 6, 1981.

    28. [28]

      John, J. M.; Takebayashi, S.; Dabral, N.; Miskolzie, M.; Bergens, S. H. J. Am. Chem. Soc. 2013, 135, 8578.  doi: 10.1021/ja401294q

    29. [29]

      Dub, P. A.; Henson, N. J.; Martin, R. L.; Gordon, J. C. J. Am. Chem. Soc. 2014, 136, 3505.  doi: 10.1021/ja411374j

    30. [30]

      Ogata, O.; Nakayama, Y.; Nara, H.; Fujiwhara, M.; Kayaki, Y. Org. Lett. 2016, 18, 3894.  doi: 10.1021/acs.orglett.6b01900

    31. [31]

      (a) Ohkuma, T.; Koizumi, M.; Muñiz, K.; Hilt, G.; Kabuto, C.; Noyori, R. J. Am. Chem. Soc. 2002, 124, 6508.
      (b) Guo, R.; Chen, X.; Elpelt, C.; Song, D.; Morris, R. H. Org. Lett. 2005, 7, 1757.

  • 加载中
    1. [1]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    5. [5]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    6. [6]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    7. [7]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    9. [9]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    10. [10]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    14. [14]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    15. [15]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    16. [16]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    17. [17]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    18. [18]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    19. [19]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    20. [20]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

Metrics
  • PDF Downloads(9)
  • Abstract views(1226)
  • HTML views(247)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return