Citation: Fang Xiaolong, Duan Ning, Zhang Min, Li Bin. Advances for Ruthenium Catalysts with Metal-Ligand Cooperation for Hydrogenation of Oxalates into Ethylene Glycol[J]. Chinese Journal of Organic Chemistry, ;2020, 40(9): 2692-2701. doi: 10.6023/cjoc202004017 shu

Advances for Ruthenium Catalysts with Metal-Ligand Cooperation for Hydrogenation of Oxalates into Ethylene Glycol

  • Corresponding author: Fang Xiaolong, xlfang@stu.xmu.edu.cn Li Bin, binlee@stu.xmu.edu.cn
  • Received Date: 12 April 2020
    Revised Date: 9 May 2020
    Available Online: 27 May 2020

    Fund Project: the Natural Science Foundation of Anhui Province 1808085QB48Project supported by the National Natural Science Foundation of China (No. 21802010) and the Natural Science Foundation of Anhui Province (No. 1808085QB48)the National Natural Science Foundation of China 21802010

Figures(8)

  • Ethylene glycol (EG) is an important fundamental chemical material, which has been widely used in the production of industrial chemicals such as polyester. Catalytic hydrogenation of oxalate into EG is a key step in the "coal-to-EG" industrial route. Design of efficient catalysts for catalyzing the hydrogenation of oxalate esters is a research hotspot. The research progress of ruthenium catalysts with metal-ligand cooperation in the homogeneous catalytic hydrogenation of oxalate esters in the past decade is reviewed. Based on the relationship between the catalyst structures and properties, the catalytic hydrogenation mechanism is discussed, which provides a reference for the further design and development of new catalysts with excellent performance.
  • 加载中
    1. [1]

      Chen, L.; Guo, P.; Qiao, M.; Yan, S.; Li, H.; Wei, S.; Xu, H.; Fan, K. J. Catal. 2008, 257, 172.  doi: 10.1016/j.jcat.2008.04.021

    2. [2]

      Yin, G. Sino-Global Energy 2012, 17, 62 (in Chinese).

    3. [3]

    4. [4]

      (a) Zheng, J.; Lin, H.; Wang, Y.; Zheng, X.; Duan, X.; Yuan, Y. J. Catal. 2013, 297, 110.
      (b) He, Z.; Lin, H.; He, P.; Yuan, Y. J. Catal. 2011, 277, 54.
      (c) Xu, C.; Chen, G.; Zhao, Y.; Liu, P.; Duan, X.; Gu, L.; Fu, G.; Yuan, Y.; Zheng, N. Nat. Commun. 2018, 9, 3367.

    5. [5]

      Grey, R. A.; Pez, G. P.; Wallo, A. J. Am. Chem. Soc. 1981, 103, 7536.  doi: 10.1021/ja00415a022

    6. [6]

      (a) Turek, T.; Trimm, D. L.; Cant, N. W. Catal. Rev.: Sci. Eng. 1994, 36, 645.
      (b) Pouilloux, Y.; Autin, F.; Barrault, J. Catal. Today 2000, 63, 87.
      (c) Wang, H.; Zhang, T.; Zhou, X. J. Phys.: Condens. Matter 2019, 31, 473001.

    7. [7]

      Grey, R. A.; Pez, G. P.; Wallo, A.; Corsi, J. J. Chem. Soc., Chem. Commun. 1980, 783.

    8. [8]

      Matteoli, U.; Blanchi, M.; Menchi, G.; Prediani, P.; Piacenti, F. J. Mol. Catal. 1984, 22, 353.  doi: 10.1016/0304-5102(84)80075-9

    9. [9]

      (a) Matteoli, U.; Bianchi, M.; Menchi, G.; Frediani, P.; Piacenti, F. J. Mol. Catal. 1985, 29, 269.
      (b) Matteoli, U.; Menchi, G.; Bianchi, M.; Piacenti, F. J. Organomet. Chem. 1986, 299, 233.

    10. [10]

      Teunissen, H. T.; J. Elsevier, C. Chem. Commun. 1997, 667.

    11. [11]

      (a) Teunissen, H. T. Chem. Commun. 1998, 1367.
      (b) van Engelen, M. C.; Teunissen, H. T.; de Vries, J. G.; Elsevier, C. J. J. Mol. Catal. A: Chem. 2003, 206, 185.

    12. [12]

      Boardman, B.; Hanton, M. J.; Rensburg, H. V.; Tooze, R. P. Chem. Commun. 2006, 2289.

    13. [13]

      Ohkuma, T.; Ooka, H.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 10417.  doi: 10.1021/ja00146a041

    14. [14]

      (a) Doucet, H.; Ohkuma, T.; Murata, K.; Yokozawa, T.; Kozawa, M.; Katayama, E.; England, A. F.; Ikariya, T.; Noyori, R. Angew. Chem., Int. Ed. 1998, 37, 1703.
      (b) Abdur-Rashid, K.; Clapham, S. E.; Hadzovic, A.; Harvey, J. N.; Lough, A. J.; Morris, R. H. J. Am. Chem. Soc. 2002, 124, 15104.
      (c) Sandoval, C. A.; Ohkuma, T.; Muñiz, K.; Noyori, R. J. Am. Chem. Soc. 2003, 125, 13490.
      (d) Ikariya, T.; Murata, K.; Noyori, R. Org. Biomol. Chem. 2006, 4, 393.
      (e) Dub, P. A.; Gordon, J. C. Nat. Rev. Chem. 2018, 2, 396.

    15. [15]

      (a) Clapham, S. E.; Hadzovic, A.; Morris, R. H. Coord. Chem. Rev. 2004, 248, 2201.
      (b) vom Stein, T.; Meuresch, M.; Limper, D.; Schmitz, M.; Hölscher, M.; Coetzee, J.; Cole-Hamilton, D. J.; Klankermayer, J.; Leitner, W. J. Am. Chem. Soc. 2014, 136, 13217.
      (c) Liu, Y.; Yue, X.; Luo, C.; Zhang, L.; Lei, M. Energy Environ. Mater. 2019, 2, 292.

    16. [16]

      (a) Dub, P. A.; Ikariya, T. ACS Catal. 2012, 2, 1718.
      (b) Zhao, B.; Han, Z.; Ding, K. Angew. Chem., Int. Ed. 2013, 52, 4744.
      (c) Werkmeister, S.; Junge, K.; Beller, M. Org. Process Res. Dev. 2014, 18, 289.
      (d) Pritchard, J.; Filonenko, G. A.; van Putten, R.; Hensen, E. J. M.; Pidko, E. A. Chem. Soc. Rev. 2015, 44, 3808.
      (e) Zhou, Y.; Khan, R.; Fan, B.; Xu, L. Synthesis 2019, 51, 2491.
      (f) Dub, P. A.; Batrice, R. J.; Gordon, J. C.; Scott, B. L.; Minko, Y.; Schmidt, J. G.; Williams, R. F. Org. Process Res. Dev. 2020, 24, 415.

    17. [17]

      Saudan, L. A.; Saudan, C. M.; Debieux, C.; Wyss, P. Angew. Chem., Int. Ed. 2007, 46, 7473.  doi: 10.1002/anie.200701015

    18. [18]

      (a) Kuriyama, W.; Matsumoto, T.; Ogata, O.; Ino, Y.; Aoki, K.; Tanaka, S.; Ishida, K.; Kobayashi, T.; Sayo, N.; Saito, T. Org. Process Res. Dev. 2012, 16, 166.
      (b) Han, Z.; Rong, L.; Wu, J.; Zhang, L.; Wang, Z.; Ding, K. Angew. Chem., Int. Ed. 2012, 51, 13041.

    19. [19]

      Ziebart, C.; Jackstell, R.; Beller, M. ChemCatChem 2013, 5.

    20. [20]

      Spasyuk, D.; Smith, S.; Gusev, D. G. Angew. Chem., Int. Ed. 2012, 51, 2772.  doi: 10.1002/anie.201108956

    21. [21]

    22. [22]

      (a) Abdur-Rashid, K.; Faatz, M.; Lough, A. J.; Morris, R. H. J. Am. Chem. Soc. 2001, 123, 7473.
      (b) Hartmann, R.; Chen, P. Angew. Chem., Int. Ed. 2001, 40, 3581.

    23. [23]

      Li, W.; Xie, J. H.; Yuan, M. L.; Zhou, Q. L. Green Chem. 2014, 16, 4081.  doi: 10.1039/C4GC00835A

    24. [24]

    25. [25]

      Noyori, R.; Ohkuma, T. Angew. Chem., Int. Ed. 2001, 40, 40.  doi: 10.1002/1521-3773(20010105)40:1<40::AID-ANIE40>3.0.CO;2-5

    26. [26]

      (a) Abdur-Rashid, K.; Guo, R.; Lough, A. J.; Morris, R. H.; Song, D. Adv. Synth. Catal. 2005, 347, 571.
      (b) Jia, W.; Chen, X.; Guo, R.; Sui-Seng, C.; Amoroso, D.; Lough, A. J.; Abdur-Rashid, K. Dalton Trans. 2009, 39, 8301.

    27. [27]

      (a) Drake, J. L.; Manna, C. M.; Byers, J. A. Organometallics 2013, 32, 6891.
      (b) Spasyuk, D.; Smith, S.; Gusev, D. G. Angew. Chem., Int. Ed. 2013, 52, 2538.
      (c) Moore, C. M.; Bark, B.; Szymczak, N. K. ACS Catal. 2016, 6, 1981.

    28. [28]

      John, J. M.; Takebayashi, S.; Dabral, N.; Miskolzie, M.; Bergens, S. H. J. Am. Chem. Soc. 2013, 135, 8578.  doi: 10.1021/ja401294q

    29. [29]

      Dub, P. A.; Henson, N. J.; Martin, R. L.; Gordon, J. C. J. Am. Chem. Soc. 2014, 136, 3505.  doi: 10.1021/ja411374j

    30. [30]

      Ogata, O.; Nakayama, Y.; Nara, H.; Fujiwhara, M.; Kayaki, Y. Org. Lett. 2016, 18, 3894.  doi: 10.1021/acs.orglett.6b01900

    31. [31]

      (a) Ohkuma, T.; Koizumi, M.; Muñiz, K.; Hilt, G.; Kabuto, C.; Noyori, R. J. Am. Chem. Soc. 2002, 124, 6508.
      (b) Guo, R.; Chen, X.; Elpelt, C.; Song, D.; Morris, R. H. Org. Lett. 2005, 7, 1757.

  • 加载中
    1. [1]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    2. [2]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    6. [6]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    7. [7]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    8. [8]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    10. [10]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    11. [11]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    12. [12]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    13. [13]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    14. [14]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    15. [15]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    16. [16]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    19. [19]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    20. [20]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(13)
  • Abstract views(1399)
  • HTML views(304)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return