Citation: Li Anbang, Li Zhongshan, Zhao Yang, Yao Tingting, Cheng Jingli, Zhao Jinhao. Design, Synthesis and Antifungal Activity of Novel Pyrazole-Thiophene Carboxamide Derivatives[J]. Chinese Journal of Organic Chemistry, ;2020, 40(9): 2836-2844. doi: 10.6023/cjoc202004013 shu

Design, Synthesis and Antifungal Activity of Novel Pyrazole-Thiophene Carboxamide Derivatives

  • Corresponding author: Cheng Jingli, chengjingli@zju.edu.cn Zhao Jinhao, jinhaozhao@zju.edu.cn
  • Received Date: 9 April 2020
    Revised Date: 16 May 2020
    Available Online: 24 June 2020

    Fund Project: the Natural Science Foundation of Zhejiang Province LY19C140006the National Natural Science Foundation of China 31872022the National Key Research & Development Program of China 2017YFD0200505Project supported by the Natural Science Foundation of Zhejiang Province (No. LY19C140006), the National Key Research & Development Program of China (No. 2017YFD0200505) and the National Natural Science Foundation of China (No. 31872022)

Figures(5)

  • Succinate dehydrogenase inhibitor is a low-toxic and high active fungicide. In order to develop novel and broad-spectrum succinate dehydrogenase inhibitor (SDHI) fungicides, thiophene was introduced into the structure of pyrazole carboxamide fungicides. Twenty four pyrazole-thiophene carboxamides were designed, synthesized and characterized by 1H NMR, 13C NMR and HRMS. The crystal structure of N-(4-methoxyphenyl)-4-(1-methyl-1H-pyrazol-4-yl)thiophene-2-carboxamide (7i) was determined by X-ray diffraction. The antifungal activity of all the synthesized compounds was determined against six plant pathogenic fungi, and preliminary bioassays suggested that some compounds exhibited good antifungal activity against Rhizoctonia solani, Fusarium graminearum and Botrytis cinerea. Among them, N-(4-fluorophenethyl)-4-(1-methyl-1H-pyrazol-4-yl)thiophene-2-carboxamide (7c) exhibited the best antifungal activities against R. solani in vitro with EC50 value of 11.6 μmol/L, and N-(2-fluorophenyl)-4-(1-methyl-1H-pyrazol-4-yl)thiophene-2-carboxamide (7j) against F. graminearum with EC50 value of 28.9 μmol/L. And N-(4-chlorophenyl)-4-(1-methyl-1H-pyrazol-4-yl)thiophene-2-carboxamide (7h) showed similar inhibition abilities with thifluzamide against B. cinerea with EC50 value of 21.3 μmol/L. The molecular docking results showed that the high antifungal activitie compounds form stronger interactions with important amino acid residues of succinate dehydrogenase.
  • 加载中
    1. [1]

      Walter, H. In Bioactive Carboxylic Compound Classes, Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim, 2016, pp. 405~425.

    2. [2]

      Oyedotun, K. S.; Lemire, B. D. J. Biol. Chem. 2004, 279, 9424.  doi: 10.1074/jbc.M311876200

    3. [3]

      Fungicide Resistance Action Committee FRAC Code List 2020: Fungal Control Agents Sorted by Cross Resistance Pattern and Mode of Action, Basel, 2020, pp. 1~16.

    4. [4]

      Avenot, H. F.; Michailides, T. J. Crop Prot. 2010, 29, 643.  doi: 10.1016/j.cropro.2010.02.019

    5. [5]

      Xiong, L.; Shen, Y.-Q.; Jiang, L.-N.; Zhu, X.-L.; Yang, W.-C.; Huang, W.; Yang, G.-F. In Discovery and Synthesis of Crop Protection Products, ACS Publications, Washington, 2015, pp. 175~194.

    6. [6]

      Yu, F.-Q.; Guan, A.-Y.; Sun, X.-F.; Li, H.-C.; Li, X.-W. Chin. J. Org. Chem. 2019, 39, 397(in Chinese).
       

    7. [7]

      Liu, X. H.; Qiao, L.; Zhai, Z. W.; Cai, P. P.; Cantrell, C. L.; Tan, C. X.; Weng, J. Q.; Han, L.; Wu, H. K. Pest Manage. Sci. 2019, 75, 2892.

    8. [8]

      Xiao, T.-T.; Cheng, W.; Qian, W.-F.; Zhang, T.-T.; Lu, T.; Gao, Y.; Tang, X.-R. Chin. J. Org. Chem. 2020, 40, 1704(in Chinese).
       

    9. [9]

      Xiong, L.; Li, H.; Jiang, L.-N.; Ge, J.-M.; Yang, W.-C.; Zhu, X. L.; Yang, G.-F. J. Agric. Food Chem. 2017, 65, 1021.  doi: 10.1021/acs.jafc.6b05134

    10. [10]

      Guo, X. F.; Zhao, B.; Fan, Z. J.; Yang, D. Y.; Zhang, N. L.; Wu, Q. F.; Yu, B.; Zhou, S.; Kalinina, T. A.; Belskaya, N. P. J. Agric. Food Chem. 2019, 67, 1647.  doi: 10.1021/acs.jafc.8b06935

    11. [11]

      Wu, Y.-Y.; Shao, W.-B.; Zhu, J.-J.; Long, Z.-Q.; Liu, L.-W.; Wang, P.-Y.; Li, Z.; Yang, S. J. Agric. Food Chem. 2019, 67, 13892.  doi: 10.1021/acs.jafc.9b05942

    12. [12]

      Du, S. J.; Lu, H. Z.; Yang, D. Y.; Li, H.; Gu, X. L.; Wan, C.; Jia, C. M.; Wang, M.; Li, X. Y.; Qin, Z. H. Molecules 2015, 20, 4071.  doi: 10.3390/molecules20034071

    13. [13]

      Li, H. X.; Nuckols, T. A.; Harris, D.; Stevenson, K. L.; Brewer, M. T. Pest Manage. Sci. 2019, 75, 3093.  doi: 10.1002/ps.5426

    14. [14]

      Hou, Y.-P.; Mao, X.-W.; Wang, J.-X.; Zhan, S.-W.; Zhou, M. G. Crop Prot. 2017, 96, 237.  doi: 10.1016/j.cropro.2017.02.011

    15. [15]

      Zhang, A. G.; Zhou, J. Y.; Tao, K.; Hou, T. P.; Jin, H. Bioorg. Med. Chem. Lett. 2018, 28, 3042.  doi: 10.1016/j.bmcl.2018.08.001

    16. [16]

      Yan, W.; Wang, X.; Li, K.; Li, T. X.; Wang, J. J.; Yao, K. C.; Cao, L.-L.; Zhao, S.-S.; Ye, Y.-H. Pestic. Biochem. Phys. 2019, 156, 160.  doi: 10.1016/j.pestbp.2019.02.017

    17. [17]

      Xue, H. S.; Liu, A. P.; Liu, W. D.; Li, J. M.; Ren, Y. G.; Huang, L.; He, L.; Ou, X. M.; Ye, J.; Huang, M. Z. Chem. Res. Chin. Univ. 2016, 32, 781.  doi: 10.1007/s40242-016-6153-z

    18. [18]

      Yao, T.-T.; Xiao, D.-X.; Li, Z.-S.; Cheng, J.-L.; Fang, S.-W.; Du, Y.-J.; Zhao, J.-H.; Dong, X.-W.; Zhu, G.-N. J. Agric. Food Chem. 2017, 65, 5397.  doi: 10.1021/acs.jafc.7b01251

    19. [19]

      Yao, T. T.; Fang, S. W.; Li, Z. S.; Xiao, D. X.; Cheng, J. L.; Ying, H. Z.; Du, Y. J.; Zhao, J. H. J. Agric. Food Chem. 2017, 65, 3204.  doi: 10.1021/acs.jafc.7b00249

    20. [20]

      Zhang, L.-J.; Yang, M.-Y.; Sun, Z.-H.; Tan, C.-X.; Weng, J.-Q.; Wu, H.-K.; Liu, X.-H. Lett. Drug. Des. Discovery 2014, 11, 1107.  doi: 10.2174/1570180811666140610212731

    21. [21]

      Ye, Y.-H.; Ma, L.; Dai, Z.-C.; Xiao, Y.; Zhang, Y.-Y.; Li, D.-D.; Wang, J.-X.; Zhu, H.-L. J. Agric. Food Chem. 2014, 62, 4063.  doi: 10.1021/jf405437k

    22. [22]

      Lv, X. H.; Ren, Z.-L.; Liu, P.; Li, B. X.; Li, Q. S.; Chu, M. J.; Cao, H. Q. Pest Manage. Sci. 2017, 73, 1585.  doi: 10.1002/ps.4488

    23. [23]

      Huang, L.-S.; Sun, G.; Cobessi, D.; Wang, A. C.; Shen, J. T.; Tung, E. Y.; Anderson, V. E.; Berry, E. A. J. Biol. Chem. 2006, 281, 5965.  doi: 10.1074/jbc.M511270200

  • 加载中
    1. [1]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    2. [2]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    3. [3]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    4. [4]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    5. [5]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    6. [6]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    7. [7]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    8. [8]

      Manman Jin Zhiguo Lv Qingtao Niu . Teaching Reformation and Case Study for “Chemical Process Development and Design” Based on “Just-in-Time” Dynamic and Accurate Matching Industrial Needs. University Chemistry, 2024, 39(11): 108-116. doi: 10.12461/PKU.DXHX202403030

    9. [9]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    10. [10]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    11. [11]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    12. [12]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    13. [13]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    14. [14]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    15. [15]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    16. [16]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    17. [17]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    18. [18]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    19. [19]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    20. [20]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

Metrics
  • PDF Downloads(11)
  • Abstract views(1375)
  • HTML views(153)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return