Citation: Song Changhua, Shen Xu, Yu Fang, He Yupeng, Yu Shouyun. Generation and Application of Iminyl Radicals from Oxime Derivatives Enabled by Visible Light Photoredox Catalysis[J]. Chinese Journal of Organic Chemistry, ;2020, 40(11): 3748-3759. doi: 10.6023/cjoc202004008 shu

Generation and Application of Iminyl Radicals from Oxime Derivatives Enabled by Visible Light Photoredox Catalysis

  • Corresponding author: He Yupeng, yupeng.he@lnpu.edu.cn Yu Shouyun, yushouyun@nju.edu.cn
  • Received Date: 6 April 2020
    Revised Date: 29 April 2020
    Available Online: 7 May 2020

    Fund Project: the National Natural Science Foundation of China 21732003the National Natural Science Foundation of China 21978124Project supported by the National Natural Science Foundation of China (Nos. 21732003, 21978124) and the Innovative Talent Project of Educational Department of Liaoning Province (No. LR2018019)the Innovative Talent Project of Educational Department of Liaoning Province LR2018019

Figures(22)

  • The advent of visible light photoredox catalysis has transformed the way of single-electron transfer (SET) processes and accessing radical species. As a result, the chemistry of nitrogen-centered radicals has witnessed a remarkable gain in interest. Specifically, under visible light photoredox catalysis, iminyl radicals can be generated from oxime derivatives, such as O-acyl oximes, O-aryl oximes and α-imino-oxy acids. Meanwhile, the reactivity of iminyl radcials is investigated systematically. Iminyl radicals can undergo four major classes of reactions, namely addition to arenes, intramolecular hydrogen atom transfer and subsequent reactions, addition to alkenes, Norrish type-I fragmentation (cleavage of α-carbon-carbon bonds) and subsequent reactions. In this review, the most significant progresses in the use of oximes and their derivatives as iminyl precursors are discussed and their engagement in photoredox-mediated transformations is outlined.
  • 加载中
    1. [1]

      Lawrence, S. A. Amines: Synthesis Properties and Applications, Cambridge University, Cambridge, 2005, p. 1016.

    2. [2]

      Zard, S. Z. Chem. Soc. Rev. 2008, 37, 1603.  doi: 10.1039/b613443m

    3. [3]

    4. [4]

    5. [5]

      Walton, J. C. Acc. Chem. Res. 2014, 47, 1406.  doi: 10.1021/ar500017f

    6. [6]

      Luo, Y.-R. Handbook of Bond Dissociation Energies in Organic Compounds, CRC, Boca Raton, 2003, p. 392.

    7. [7]

      Jiang, H.; An, X. D.; Tong, K.; Zheng, T.; Zhang, Y.; Yu, S. Angew. Chem., Int. Ed. 2015, 54, 4055.  doi: 10.1002/anie.201411342

    8. [8]

      An, X.-D.; Yu, S. Org. Lett. 2015, 17, 2692.  doi: 10.1021/acs.orglett.5b01096

    9. [9]

      Sun, J.-J; He, Y.-Y; An, X.-D; Zhang, X; Yu, L; Yu, S. Org. Chem. Front. 2018, 5, 977.  doi: 10.1039/C7QO00992E

    10. [10]

      Liu, X.-B.; Qing, Z.-X.; Zheng, X.-Y.; Zeng, J.-G.; Cheng, P.; Xie, H.-Q. Molecules 2016, 21, 1690.  doi: 10.3390/molecules21121690

    11. [11]

      Matsushita, Y.; Ochi, R. Tanaka, Y.; Koike, T.; Akita, M. Org. Chem. Front. 2020, 7, 1243.  doi: 10.1039/D0QO00271B

    12. [12]

      (a) Qin, Q.-X; Yu, S. Org. Lett. 2015, 17, 1894.
      (b) Shen, X.; Zhao, J.-J.; Yu, S. Org. Lett. 2018, 20, 5523.

    13. [13]

      Shu, W.; Nevado, C. Angew. Chem., Int. Ed. 2017, 56, 1881.  doi: 10.1002/anie.201609885

    14. [14]

      Ma, Z.-Y.; Guo, L.-N.; Gu, Y.-R.; Chen, L.; Duan, X.-H. Adv. Synth. Catal. 2018, 360, 4341.  doi: 10.1002/adsc.201801198

    15. [15]

      Chen, L; Guo, L.-N.; Ma, Z.-Y.; Gu, Y.-R.; Zhang, J.; Duan, X.-H. J. Org. Chem. 2019, 84, 6475.  doi: 10.1021/acs.joc.9b00525

    16. [16]

      Dauncey, E. M.; Morcillo, S. P.; Douglas, J. J.; Sheikh, N. S.; Leonori, D. Angew. Chem., Int. Ed. 2018, 57, 744.  doi: 10.1002/anie.201710790

    17. [17]

      Jiang, H.; Studer, A. Angew. Chem., Int. Ed. 2018, 57, 1692.  doi: 10.1002/anie.201712066

    18. [18]

      Li, J.-J.; Zhang, P.-P.; Jiang, M.; Yang, H.-J.; Zhao, Y.-F.; Fu, H. Org. Lett. 2017, 19, 1994.  doi: 10.1021/acs.orglett.7b00533

    19. [19]

      Li, Y.-W.; Mao, R.-Y.; Wu, J. Org. Lett. 2017, 19, 4472.  doi: 10.1021/acs.orglett.7b02010

    20. [20]

      Tadic-Biadatti, M.-H. L.; Callier-Dublanchet, A.; Horner, J. H.; Quiclet-Sire, B.; Zard, S. Z.; Newcomb, M. J. Org. Chem. 1997, 62, 559.  doi: 10.1021/jo961530+

    21. [21]

      Boivin, J; Schiano, A.-M; Zard, S. Z; Zhang, H.-W. Tetrahedron Lett. 1999, 40, 4531.  doi: 10.1016/S0040-4039(99)00720-0

    22. [22]

      Mikami, T.; Narasaka, K. Chem. Lett. 1999, 24, 338.

    23. [23]

      Davies, J.; Booth, S. G.; Essafi, S.; Dryfe, Robert A. W.; Leonori, D. Angew. Chem., Int. Ed. 2015, 54, 14017.  doi: 10.1002/anie.201507641

    24. [24]

      Cai, S.-H.; Xie, J.-H; Song, S.-J.; Ye, L.; Feng, C.; Loh, T. P. ACS Catal. 2016, 6, 5571.  doi: 10.1021/acscatal.6b01230

    25. [25]

      Jiang, H.; Studer, A. Angew. Chem., Int. Ed. 2017, 56, 12273.  doi: 10.1002/anie.201706270

    26. [26]

      Davies, J.; Sheikh, N. S.; Leonori, D. Angew. Chem., Int. Ed. 2017, 56, 13361.  doi: 10.1002/anie.201708497

    27. [27]

      (a) Yin, W.; Wang, X. New J. Chem. 2019, 43, 3254.
      (b) Xiao, T.-B.; Huang, H.-T.; Anand, D.; Zhou, L. Synthesis 2020, Synthesis 2020, 52, 1585.

    28. [28]

      Boivin, J.; Fouquet, E.; Zard, S. Z. Tetrahedron 1994, 50, 1757.  doi: 10.1016/S0040-4020(01)80850-4

    29. [29]

      Yu, X.-Y.; Chen, J.-R.; Wang, P.-Z.; Yang, M.-N.; Liang, D.; Xiao, W.-J. Angew. Chem., Int. Ed. 2018, 57, 738.  doi: 10.1002/anie.201710618

    30. [30]

      He, B.-Q.; Yu, X.-Y.; Wang, P.-Z.; Chen, J.-R.; Xiao, W.-J. Chem. Commun. 2018, 54, 12262.  doi: 10.1039/C8CC07072E

    31. [31]

      Wang, P.-Z.; Yu, X.-Y.; Li, C.-Y.; He, B.-Q.; Chen, J.-R.; Xiao, W.-J. Chem. Commun. 2018, 54, 9925.  doi: 10.1039/C8CC06145A

    32. [32]

      Li, L.; Chen, H.; Mei, M.; Zhou, L. Chem. Commun. 2017, 53, 11544.  doi: 10.1039/C7CC07347J

    33. [33]

      Vaillant, F. L.; Garreau, M.; Nicolai, S.; Grynova, G.; Corminboeuf, C.; Waster, J. Chem. Sci. 2018, 9, 5883.  doi: 10.1039/C8SC01818A

    34. [34]

      Zhang, J.; Li, X.-F.; Xie, W.-L.; Ye, S.-Q.; Wu, J. Org. Lett. 2019, 21, 4950.  doi: 10.1021/acs.orglett.9b01323

    35. [35]

      Zheng, M.; Li, G.-L.; Lu, H.-J. Org. Lett. 2019, 21, 1216.  doi: 10.1021/acs.orglett.9b00201

    36. [36]

      Liu, Y.; Wang, Q.-L.; Chen, Z.; Li, H.; Xiong, B.-Q.; Zhang, P.-L.; Tang, K.-W. Chem. Commun. 2020, 56, 3011.  doi: 10.1039/C9CC10057A

    37. [37]

      Jian, Y.; Chen, M.; Yang, Chao; Xia, W.-J. Eur. J. Org. Chem. 2020, 1439.

    38. [38]

      Wang, P.-Z.; He, B.-Q.; Cheng, Y.; Chen, J.-R.; Xiao, W.-J. Org. Lett. 2019, 21, 6924.  doi: 10.1021/acs.orglett.9b02535

    39. [39]

      Yu, X.-Y.; Zhao, Q.-Q.; Chen, J.; Chen, J.-R.; Xiao, W.-J. Angew. Chem., Int. Ed. 2018, 57, 15505.  doi: 10.1002/anie.201809820

    40. [40]

      Chen, J.; He, B-Q.; Wang, P.-Z.; Yu, X.-Y.; Zhao, Q.-Q.; Chen, J.-R.; Xiao, W.-J. Org. Lett. 2019, 21, 4359.  doi: 10.1021/acs.orglett.9b01529

    41. [41]

      Lu, B.; Cheng, Y.; Chen, L.-Y.; Chen, J. R.; Xiao, W.-J. ACS Catal. 2019, 9, 8159.  doi: 10.1021/acscatal.9b02830

    42. [42]

      Yu, X.-Y.; Chen, J.; Chen, H.-W.; Xiao, W.-J.; Chen, J.-R. Org. Lett. 2020, 22, 2333.  doi: 10.1021/acs.orglett.0c00532

    43. [43]

      Dauncey, E. M.; Dighe, S. U.; Douglas, J. J.; Leonori, D. Chem. Sci. 2019, 10, 7728.  doi: 10.1039/C9SC02616A

    44. [44]

      Chen, J.; Wang, P.-Z.; Lu, B.; Liang, D.; Yu, X.-Y.; Xiao, W.-J.; Chen, J. R. Org. Lett. 2019, 21, 9763.  doi: 10.1021/acs.orglett.9b03970

    45. [45]

      Wang, T.; Wang; Y.-N.; Wang, R.; Zhang, B.-C.; Yang, C.; Li, Y.-L.; Wang, X.-S. Nat. Commun. 2019, 10, 5373.  doi: 10.1038/s41467-019-13369-x

    46. [46]

      (a) Li, Y.-H.; Wang, C.-H.; Gao, S.-Q.; Qi, F.-M.; Yang, S.-D. Chem. Commun. 2019, 55, 11888.
      (b) Li, C.; Qi, Z.-C.; Yang, Q.; Qiang, X.-Y.; Yang, A.-D. Chin. J. Chem. 2018, 36, 1052.

    47. [47]

      (a) Cheng, Y.-Y.; Lei, T.; Su, L.-L.; Fan, X.-W.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Org. Lett. 2019, 21, 8789.
      (b) Fan, X.-W.; Lei, T.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Org. Lett. 2019, 21, 4153.
      (c) Fan, X.-W.; Lei, T.; Liu, Z.; Yang, X.-L.; Cheng, Y.-Y.; Liang, G.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Eur. J. Org. Chem. 2020, 10, 1551.

    48. [48]

      Qin, Q.; Han, Y.-Y; Jiao, Y.-Y; He, Y.; Yu, S. Org. Lett. 2017, 19, 2909.  doi: 10.1021/acs.orglett.7b01145

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    3. [3]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    4. [4]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    5. [5]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    6. [6]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    7. [7]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    8. [8]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    9. [9]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    10. [10]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    11. [11]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    12. [12]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    13. [13]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    14. [14]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    15. [15]

      Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055

    16. [16]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    17. [17]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    18. [18]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    19. [19]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    20. [20]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

Metrics
  • PDF Downloads(113)
  • Abstract views(5710)
  • HTML views(1227)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return