Citation: Fang Ru, Ding Xu, Luo Wen, Hong Chen. An "Off-On" Near-Infrared Fluorescent Probe for Cu2+ Detection in Living Cells[J]. Chinese Journal of Organic Chemistry, ;2020, 40(9): 2949-2955. doi: 10.6023/cjoc202004007 shu

An "Off-On" Near-Infrared Fluorescent Probe for Cu2+ Detection in Living Cells

  • Corresponding author: Luo Wen, luowen83@163.com Hong Chen, hongchenbest@163.com
  • Received Date: 3 April 2020
    Revised Date: 27 May 2020
    Available Online: 24 June 2020

    Fund Project: the Young Talents Program of Medical School of Henan University 2019005the Science and Technology Administration of Kaifeng City 1903004National Natural Science Foundation of China U1704176Project supported by the National Natural Science Foundation of China (No. U1704176), the Science and Technology Planning Project of Henan Province (No. 182102310504), the Science and Technology Administration of Kaifeng City (No. 1903004) and the Young Talents Program of Medical School of Henan University (No. 2019005)the Science and Technology Planning Project of Henan Province 182102310504

Figures(11)

  • A near-infrared fluorescent probe (6) was designed and synthesized by using 2-(6-(dimethylamino)naphthalen-2-yl)-7-hydroxy-4H-chromen-4-one as report group and 2-picolinate as recognition group. The probe was identified by 1H NMR, 13C NMR, MS and elemental analysis. The probe could react specifically with Cu2+ and its fluorescence intensity increased obviously at 655 nm, at the meantime, the color change of the solution can be seen by naked eyes. A linear relationship was obtained between the fluorescence intensity and concentration of Cu2+ in the range of 0~2.0×10-5 mol/L, and the detection limit was 3.2×10-8 mol/L. The mechanism study showed that Cu2+ catalyzed the cleavage of the ester bond and strongly fluorescent 2-[6-(N, N-dimethylamino)naphthyl]-7-hydroxy-4H-chromen-4-one (5) was generated. In addition, the probe 6 could be used for fluorescence imaging of Cu2+ in living cells.
  • 加载中
    1. [1]

      Zhang, H.; Qu, Y.; Zhao, K.; Wang, C.; Wu, Y.; Wu, H. J. Chin. Chem. Soc. 2019, 66, 1.  doi: 10.1002/jccs.201980101

    2. [2]

      Jung, H. S.; Kwon, P. S.; Lee, J. W.; Kim, J. I.; Hong, C. S.; Kim, J. W.; Yan, S.; Lee, J. Y.; Lee, J. H.; Joo, T.; Kim, J. S. J. Am. Chem. Soc. 2009, 131, 2008.  doi: 10.1021/ja808611d

    3. [3]

      (a) Hanif, M.; Rafiq, M.; Saleem, M.; Mustaqeem, M.; Jamil, S. J. Chin. Chem. Soc. 2018, 66, 500.
      (b) Tang, M.; Zhu, B.; Qu, Y.; Jin, Z.; Bai, S.; Chai, F.; Chen, L.; Wang, C.; Qu, F. Mikrochim. Acta 2019, 187, 65.
      (c) Lal, S.; Prakash, K.; Hooda, S.; Kumar, V.; Kumar, P. J. Mol. Struct. 2020, 1199, 127003.

    4. [4]

      Xu, J.; Hou, Y.; Ma, Q.; Wu, X.; Feng, S.; Zhang, J.; Shen, Y. Spectrochim. Acta A 2014, 124, 416.  doi: 10.1016/j.saa.2014.01.046

    5. [5]

      Staderini, M.; Martin, M. A.; Bolognesi, M. L.; Menendez, J. C. Chem. Soc. Rev. 2015, 44, 1807.  doi: 10.1039/C4CS00337C

    6. [6]

    7. [7]

      (a) Xu, Z.; Yoon, J.; Spring, D. R. Chem. Commun. 2010, 46, 2563.
      (b) Kaur, P.; Kaur, S.; Singh, K.; Sharma, P. R.; Kaur, T. Dalton Trans. 2011, 40, 10818.
      (c) Chen, F.; Hou, F.; Huang, L.; Cheng, J.; Liu, H.; Xi, P.; Bai, D.; Zeng, Z. Dyes Pigm. 2013, 98, 146.

    8. [8]

      Pronin, D.; Krishnakumar, S.; Rychlik, M.; Wu, H.; Huang, D. J. Agric. Food Chem. 2019, 67, 10726.  doi: 10.1021/acs.jafc.9b04025

    9. [9]

      (a) Liu, B.; Pang, Y.; Bouhenni, R.; Duah, E.; Paruchuri, S.; McDonald, L. Chem. Commun. 2015, 51, 11060.
      (b) Qin, T.; Huang, Y.; Zhu, K.; Wang, J.; Pan, C.; Liu, B.; Wang, L. Anal. Chim. Acta 2019, 1076, 125.
      (c) Zhu, K.; Lv, T.; Qin, T.; Huang, Y.; Wang, L.; Liu, B. Chem. Commun. 2019, 55, 13983.
      (d) Qin, T.; Liu, B.; Huang, Y.; Yang, K.; Zhu, K.; Luo, Z.; Pan, C.; Wang, L. Sens. Actuators. B 2018, 277, 484.

    10. [10]

      Yang, Y. C.; Zhao, Y. M.; Wang, Q. Z.; Ren, Q. L.; Shao, S. Y.; Luo, W. Fine Chem. 2018, 35, 4(in Chinese)  doi: 10.13550/j.jxhg.2018.04.005

    11. [11]

      List, B.; Barbas III, C. F.; Lerner, R. A. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 15351.  doi: 10.1073/pnas.95.26.15351

    12. [12]

      Chen, X.; Jia, J.; Ma, H.; Wang, S.; Wang, X. Anal. Chim. Acta 2009, 632, 9.  doi: 10.1016/j.aca.2007.08.025

    13. [13]

      Chen, S.; Hou, P.; Foley, J. W.; Song, X. Z. RSC Adv. 2013, 3, 5591.  doi: 10.1039/c3ra23057k

  • 加载中
    1. [1]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    2. [2]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    3. [3]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    4. [4]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    5. [5]

      Xian BISisi WANGJinyue ZHANGYujia PENGZhen SHENHua LU . Discovery, development, and perspectives of circularly polarized luminescent materials based on β-isoindigo skeletons. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1049-1057. doi: 10.11862/CJIC.20240456

    6. [6]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    7. [7]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    8. [8]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    9. [9]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    10. [10]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    11. [11]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    12. [12]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    13. [13]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    14. [14]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    15. [15]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    16. [16]

      Wei GAOMeiqi SONGXuan RENJianliang BAIJing SUJianlong MAZhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112

    17. [17]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    18. [18]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    19. [19]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    20. [20]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

Metrics
  • PDF Downloads(17)
  • Abstract views(1960)
  • HTML views(535)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return