Citation: Kong Yaolei, Sun Xiaotong, Weng Jianquan. Selectfluor as "Fluorine-Free" Functional Reagent Applied to Organic Synthesis under Transition Metal-Free Conditions[J]. Chinese Journal of Organic Chemistry, ;2020, 40(9): 2641-2657. doi: 10.6023/cjoc202004005 shu

Selectfluor as "Fluorine-Free" Functional Reagent Applied to Organic Synthesis under Transition Metal-Free Conditions

  • Corresponding author: Weng Jianquan, jqweng@zjut.edu.cn
  • Received Date: 2 April 2020
    Revised Date: 13 May 2020
    Available Online: 11 June 2020

    Fund Project: Project supported by the Natural Science Foundation of Zhejiang Province (No. LY17C140003)the Natural Science Foundation of Zhejiang Province LY17C140003

Figures(28)

  • Selectfluor, a commercial electrophilic fluorination reagent with superior performance, is widely used in fluorination reactions. In recent years, Selectfluor has also been widely applied as "fluorine-free" functional reagent in organic synthesis. Especially the application of Selectfluor/transition metals synergetic catalytic system has made great progress. However, this catalytic system has some disadvantages, such as the use of expensive transition metals and environmental unfriendliness. Therefore, more and more attention has been paid to the application of Selectfluor as "fluorine-free" functional reagent under transition metal-free conditions. In this paper, classified by the type of reactions, the research progress of Selectfluor as a "fluorine-free" functional reagent in organic synthesis under transition metal-free conditions is reviewed, and their future outlook is also discussed.
  • 加载中
    1. [1]

      Singh, R. P.; Shreeve, J. M. Acc. Chem. Res. 2004, 37, 31.  doi: 10.1021/ar030043v

    2. [2]

      Campbell, M. G.; Ritter, T. Chem. Rev. 2015, 115, 612.  doi: 10.1021/cr500366b

    3. [3]

      Champagne, P. A.; Desroches, J.; Hamel, J. D.; Vandamme, M.; Paquin, J. F. Chem. Rev. 2015, 115, 9073.  doi: 10.1021/cr500706a

    4. [4]

      Huang, Y.-L.; Chen, Q. Chin. J. Org. Chem. 2017, 37, 2745 (in Chinese).
       

    5. [5]

      Tian, Y.; Zhou, G.; Zhao, X.; Dan, W. Acta Chim. Sinica 2018, 76, 962 (in Chinese).

    6. [6]

      Hu, J.; Yang, Y.; Lou, Z.; Ni, C.; Hu, J. Chin. J. Chem. 2018, 36, 1202.  doi: 10.1002/cjoc.201800426

    7. [7]

      Kandula, V.; Thota, P. K.; Mallesham, P.; Raghavulu, K.; Chatterjee, A.; Yennam, S.; Behera, M. Synlett 2019, 30, 2295.  doi: 10.1055/s-0039-1691489

    8. [8]

      Fuchigami, T.; Inagi, S. Acc. Chem. Res. 2020, 53, 322.  doi: 10.1021/acs.accounts.9b00520

    9. [9]

      Stavber, S. Molecules 2011, 16, 6432.  doi: 10.3390/molecules16086432

    10. [10]

      Yang, K.; Song, M.-J.; Ali, A. I. M.; Mudassir, S. M.; Ge, H.-B. Chem. Asian J. 2020, 15, 729.  doi: 10.1002/asia.202000011

    11. [11]

      Brand, J. P.; Li, Y.; Waser, J. Isr. J. Chem. 2013, 53, 901.  doi: 10.1002/ijch.201300044

    12. [12]

      Miro, J.; Del Pozo, C. Chem. Rev. 2016, 116, 11924.  doi: 10.1021/acs.chemrev.6b00203

    13. [13]

      Zhu, S.-F.; Chen, K. Synlett 2017, 28, 640.  doi: 10.1055/s-0036-1588693

    14. [14]

      Xu, Q.; Gu, P.; Wang, F.-J.; Shi, M. Org. Chem. Front. 2015, 2, 1475.  doi: 10.1039/C5QO00155B

    15. [15]

      Liu, J.-B.; Xu, X.-H.; Qing, F.-L. Org. Lett. 2015, 17, 5048.  doi: 10.1021/acs.orglett.5b02522

    16. [16]

      Fu, M.-L.; Liu, J.-B.; Xu, X.-H.; Qing, F.-L. J. Org. Chem. 2017, 82, 3702.  doi: 10.1021/acs.joc.7b00190

    17. [17]

      Zhang, J.; Wang, H.; Ren, S.-B.; Zhang, W.-X.; Liu, Y.-K. Chin. J. Org. Chem. 2015, 35, 2650 (in Chinese).
       

    18. [18]

      Zheng, L.-M.; Shi, D.-D.; Bao, H.-Y.; Liu, Y.-K. Chin. J. Org. Chem. 2019, 39, 2821 (in Chinese).
       

    19. [19]

      Shi, D.-D.; Bao, H.-Y.; Xu, Z.; Liu, Y.-K. Chin. J. Org. Chem. 2017, 37, 1290 (in Chinese).
       

    20. [20]

      Samanta, S.; Hajra, A. J. Org. Chem. 2019, 84, 4363.  doi: 10.1021/acs.joc.9b00366

    21. [21]

      Kumaraswamy, G.; Gangadhar, M.; Ramesh, V.; Ankamma, K.; Sridhar, B. Org. Lett. 2019, 21, 6300.  doi: 10.1021/acs.orglett.9b02180

    22. [22]

      Daniels, M. H.; Hubbs, J. Tetrahedron Lett. 2011, 52, 3543.  doi: 10.1016/j.tetlet.2011.05.012

    23. [23]

      Liu, L.; Wang, J.-B.; Zhou, H.-W. J. Org. Chem. 2015, 80, 4749.  doi: 10.1021/acs.joc.5b00261

    24. [24]

      Liang, X.-A.; Niu, L.-B.; Wang, S.-C.; Liu, J.-M.; Lei, A. Org. Lett. 2019, 21, 2441.  doi: 10.1021/acs.orglett.9b00744

    25. [25]

      Niu, L.-B.; Liu, J.-M.; Liang, X.-A.; Wang, S.-C.; Lei, A. Nat. Commun. 2019, 10, 467.  doi: 10.1038/s41467-019-08413-9

    26. [26]

      Zhao, H.; Jin, J. Org. Lett. 2019, 21, 6179.  doi: 10.1021/acs.orglett.9b01635

    27. [27]

      Galloway, J. D.; Baxter, R. D. Tetrahedron 2019, 75, 130665.  doi: 10.1016/j.tet.2019.130665

    28. [28]

      Shi, D.; Qin, H.-T.; Zhu, C.; Liu, F. Eur. J. Org. Chem. 2015, 2015, 5084.  doi: 10.1002/ejoc.201500780

    29. [29]

      Lv, Y.-H.; Sun, K.; Pu, W.-Y.; Mao, S.-K.; Li, G.; Niu, J.-J.; Chen, Q.; Wang, T.-T. RSC Adv. 2016, 6, 93486.  doi: 10.1039/C6RA22653A

    30. [30]

      Sun, B.; Yin, S.; Zhuang, X.-H.; Jin, C.; Su, W.-K. Org. Biomol. Chem. 2018, 16, 6017.  doi: 10.1039/C8OB01348A

    31. [31]

      Yuan, J.-W.; Zeng, F.-L.; Mai, W.-P.; Yang, L.-R.; Xiao, Y.-M.; Mao, P.; Wei, D.-H. Org. Biomol. Chem. 2019, 17, 5038.  doi: 10.1039/C9OB00509A

    32. [32]

      Yang, Z.; Chen, S.-W.; Yang, F.; Zhang, C.-X.; Dou, Y.; Zhou, Q.-J.; Yan, Y.-Z.; Tang, L. Eur. J. Org. Chem. 2019, 5998.

    33. [33]

      Tang, L.; Yang, Z.; Yang, F.; Huang, Y.-F.; Chen, H.-F.; Cheng, H.; Song, W.-Y.; Ren, B.; Zhou, Q.-J. ChemistrySelect 2019, 4, 12053.  doi: 10.1002/slct.201903856

    34. [34]

      Yadav, J. S.; Reddy, B. V. S.; Reddy, Y. J. Tetrahedron Lett. 2007, 48, 7034.  doi: 10.1016/j.tetlet.2007.07.130

    35. [35]

      Yadav, J. S.; Reddy, B. V. S.; Reddy, Y. J. Chem. Lett. 2008, 37, 652.  doi: 10.1246/cl.2008.652

    36. [36]

      Abonia, R.; Gutierrez, L. F.; Zwarycz, A. T.; Correa Smits, S.; Laali, K. K. Heteroat. Chem. 2019, 2019, 1.

    37. [37]

      Wu, D.-Z.; Yang, X.-J.; Wu, L.-Q. J. Chem. Sci. 2012, 124, 901.  doi: 10.1007/s12039-012-0270-0

    38. [38]

      Khazaei, A.; Rahmati, S.; Khalafi-nezhad, A.; Saednia, S. J. Fluorine Chem. 2012, 137, 123.  doi: 10.1016/j.jfluchem.2012.03.005

    39. [39]

      Chen, Y.; Qi, H.-Y.; Chen, N.; Ren, D.-M.; Xu, J.-X.; Yang, Z.-H. J. Org. Chem. 2019, 84, 9044.  doi: 10.1021/acs.joc.9b00965

    40. [40]

      Li, X.-F.; Fu, X.-L.; Huang, Y.-L.; Yan, Z.-Y. J. Chem. Res. 2018, 202.

    41. [41]

      Huang, Y.-L.; Lei, J.-Y.; Fu, X.-L.; Xie, W.-L.; Li, X.-F. J. Chem. Res. 2019, 43, 179.  doi: 10.1177/1747519819857478

    42. [42]

      Xie, L.-Y.; Qu, J.; Peng, S.; Liu, K.-J.; Wang, Z.; Ding, M.-H.; Wang, Y.; Cao, Z.; He, W.-M. Green Chem. 2018, 20, 760.  doi: 10.1039/C7GC03106H

    43. [43]

      Yuan, J.-W.; Zhu, J.-L.; Li, B.; Yang, L.-Y.; Mao, P.; Zhang, S.-R.; Li, Y.-C.; Qu, L.-B. Org. Biomol. Chem. 2019, 17, 10178.  doi: 10.1039/C9OB02157D

    44. [44]

      Chen, Q.; Zeng, J.-K.; Yan, X.-X.; Huang, Y.-L.; Wen, C.-X.; Liu, X.-G.; Zhang, K. J. Org. Chem. 2016, 81, 10043.  doi: 10.1021/acs.joc.6b01932

    45. [45]

      Yang, K.; Zhang, H.; Niu, B.; Tang, T.-D.; Ge, H.-B. Eur. J. Org. Chem. 2018, 2018, 5520.  doi: 10.1002/ejoc.201801090

    46. [46]

      Mai, W.-P.; Yuan, J.-W.; Zhu, J.-L.; Li, Q.-Q.; Yang, L.-R.; Xiao, Y.-M.; Mao, P.; Qu, L.-B. ChemistrySelect 2019, 4, 11066.  doi: 10.1002/slct.201903478

    47. [47]

      Zupan, M.; Iskra, J.; Stavber, S. Tetrahedron Lett. 1997, 38, 6305.  doi: 10.1016/S0040-4039(97)01414-7

    48. [48]

      Chiappe, C.; Pieraccini, D. ARKIVOC 2002, 249.

    49. [49]

      Stavber, S.; Jereb, M.; Zupan, M. Chem. Commun. 2002, 488.

    50. [50]

      Jereb, M.; Stavber, S.; Zupan, M. Tetrahedron 2003, 59, 5935.  doi: 10.1016/S0040-4020(03)00904-9

    51. [51]

      Ye, C.-F.; Shreeve, J. M. J. Org. Chem. 2004, 69, 8561.  doi: 10.1021/jo048383x

    52. [52]

      Pavlinac, J.; Zupan, M.; Stavber, S. J. Org. Chem. 2006, 71, 1027.  doi: 10.1021/jo052021n

    53. [53]

      Krow, G. R.; Gandla, D.; Guo, W. W.; Centafont, R. A.; Lin, G. L.; DeBrosse, C.; Sonnet, P. E.; Ross, C. W.; Ramjit, H. G.; Cannon, K. C. J. Org. Chem. 2008, 73, 2122.  doi: 10.1021/jo702155v

    54. [54]

      Khupse, R. S.; Erhardt, P. W. Org. Lett. 2008, 10, 5007.  doi: 10.1021/ol802112r

    55. [55]

      Mal, D.; De, S. R. Org. Lett. 2009, 11, 4398.  doi: 10.1021/ol901817r

    56. [56]

      Laali, K. K.; Nandi, G. C.; Bunge, S. D. Tetrahedron Lett. 2014, 55, 2401.  doi: 10.1016/j.tetlet.2014.02.110

    57. [57]

      Shi, L.-L.; Zhang, D.-M.; Lin, R.-Y.; Zhang, C.; Li, X.; Jiao, N. Tetrahedron Lett. 2014, 55, 2243.  doi: 10.1016/j.tetlet.2014.02.071

    58. [58]

      Dannenberg, C. A.; Bizet, V.; Zou, L.-H.; Bolm, C. Eur. J. Org. Chem. 2015, 2015, 77.  doi: 10.1002/ejoc.201403352

    59. [59]

      Liang, D.-Q.; Li, X.-G.; Wang, C.-W.; Dong, Q.-S.; Wang, B.-L.; Wang, H. Tetrahedron Lett. 2016, 57, 5390.  doi: 10.1016/j.tetlet.2016.10.092

    60. [60]

      Huang, B.-B.; Zhao, Y.-T.; Yang, C.; Gao, Y.; Xia, W.-J. Org. Lett. 2017, 19, 3799.  doi: 10.1021/acs.orglett.7b01427

    61. [61]

      Qi, H.; Li, X.; Liu, Z.; Miao, S.-S.; Fang, Z.; Chen, L.; Fang, Z.; Guo, K. ChemistrySelect 2018, 3, 10689.  doi: 10.1002/slct.201802925

    62. [62]

      Scheidt, F.; Neufeld, J.; Schafer, M.; Thiehoff, C.; Gilmour, R. Org. Lett. 2018, 20, 8073.  doi: 10.1021/acs.orglett.8b03794

    63. [63]

      Sarie, J. C.; Neufeld, J.; Daniliuc, C. G.; Gilmour, R. ACS Catal. 2019, 9, 7232.  doi: 10.1021/acscatal.9b02313

    64. [64]

      Hu, J.; Zhou, G.; Tian, Y.-W.; Zhao, X.-M. Org. Biomol. Chem. 2019, 17, 6342.  doi: 10.1039/C9OB00972H

    65. [65]

      Blank, S. J.; Stephens, C. E. Tetrahedron Lett. 2006, 47, 6849.  doi: 10.1016/j.tetlet.2006.07.071

    66. [66]

      Kirihara, M.; Naito, S.; Ishizuka, Y.; Hanai, H.; Noguchi, T. Tetrahedron Lett. 2011, 52, 3086.  doi: 10.1016/j.tetlet.2011.03.132

    67. [67]

      Wu, D.-G.; Zhang, J.; Wang, H.; Zhang, J.-H.; Liu, Y.-K.; Liu, M.-C. Asian J. Org. Chem. 2014, 3, 1163.  doi: 10.1002/ajoc.201402171

    68. [68]

      Wang, H.; Ren, S.-B.; Zhang, J.; Zhang, W.; Liu, Y.-K. J. Org. Chem. 2015, 80, 6856.  doi: 10.1021/acs.joc.5b00857

    69. [69]

      Rajawinslin, R. R.; Raihan, M. J.; Janreddy, D.; Kavala, V.; Kuo, C.-W.; Kuo, T.-S.; Chen, M.-L.; He, C.-H.; Yao, C.-F. Tetrahedron 2014, 70, 7505.  doi: 10.1016/j.tet.2014.08.024

    70. [70]

      Lv, Y.-H.; Wang, X.; Cui, H.; Sun, K.; Pu, W.-Y.; Li, G.; Wu, Y.-T.; He, J.-L.; Ren, X.-R. RSC Adv. 2016, 6, 74917.  doi: 10.1039/C6RA16266E

    71. [71]

      Allmann, T. C.; Moldovan, R. P.; Jones, P. G.; Lindel, T. Chem. Eur. J. 2016, 22, 111.  doi: 10.1002/chem.201503695

    72. [72]

      Chen, Q.; Zeng, J.-K.; Yan, X.-X, ; Huang, Y.-L.; Du, Z.-Y.; Zhang, K.; Wen, C.-X. Tetrahedron Lett. 2016, 57, 3379.  doi: 10.1016/j.tetlet.2016.06.078

    73. [73]

      Bohlmann, R.; Hauser, A. Synlett 2016, 27, 1870.  doi: 10.1055/s-0035-1561642

    74. [74]

      Jiang, X.-J.; Yang, J.-J.; Zhang, F.; Yu, P.; Yi, P.; Sun, Y.-W.; Wang, Y.-Q. Org. Lett. 2016, 18, 3154.  doi: 10.1021/acs.orglett.6b01367

    75. [75]

      Xie, L.-Y.; Peng, S.; Liu, F.; Yi, J.-Y.; Wang, M.; Tang, Z.; Xu, X.; He, W.-M. Adv. Synth. Catal. 2018, 360, 4259.  doi: 10.1002/adsc.201800918

    76. [76]

      Shah, S. T. A.; Singh, S.; Guiry, P. J. J. Org. Chem. 2009, 74, 2179.  doi: 10.1021/jo802494t

    77. [77]

      Xie, L.-J.; Wang, R.-L.; Wang, D.; Liu, L.; Cheng, L. Chem. Commun. 2017, 53, 10734.  doi: 10.1039/C7CC05544G

    78. [78]

      Wang, S.-C.; Liu, J.-M.; Niu, L.-B.; Yi, H.; Chiang, C.-W.; Lei, A. J. Photochem. Photobiol., A 2018, 355, 120.  doi: 10.1016/j.jphotochem.2017.09.075

    79. [79]

      Zeng, Y.-J.; Duan, Y.; Zhao, H.; Hu, X.-G. Chin. J. Org. Chem. 2018, 38, 1712 (in Chinese).
       

    80. [80]

      Yadav, J. S.; Reddy, B. V. S.; Sunitha, V.; Reddy, K. S. Adv. Synth. Catal. 2003, 345, 1203.  doi: 10.1002/adsc.200303101

    81. [81]

      Kumar, B. S.; Reddy, Y. T.; Reddy, P. N.; Kumar, P. S.; Rajitha, B. J. Heterocyclic Chem. 2006, 43, 477.  doi: 10.1002/jhet.5570430233

    82. [82]

      Ranjbar-Karimi, R.; Hashemi-Uderji, S.; Mousavi, M. J. Iran. Chem. Soc. 2011, 8, 193.  doi: 10.1007/BF03246215

    83. [83]

      Heravi, M. R. P. J. Iran. Chem. Soc. 2009, 6, 483.  doi: 10.1007/BF03246525

    84. [84]

      Ye, W.-M.; Li, W.-B.; Zhang, J.-L. Chem. Commun. 2014, 50, 9879.  doi: 10.1039/C4CC03450C

    85. [85]

      Wei, D.-L.; Li, Y.-R.; Liang, F.-S. Adv. Synth. Catal. 2016, 358, 3887.  doi: 10.1002/adsc.201600587

    86. [86]

      Yan, D.-M.; Zhao, Q.-Q.; Rao, L.; Chen, J.-R.; Xiao, W.-J. Chem. Eur. J. 2018, 24, 16895.  doi: 10.1002/chem.201804229

    87. [87]

      Gao, Y.-J.; Hider, R. C.; Ma, Y.-M. RSC Adv. 2019, 9, 10340.  doi: 10.1039/C9RA01481K

    88. [88]

      Chen, J.; Ding, Y.-X.; Gao, Y.-J.; Zhou, D.-H.; Hider, R.; Ma, Y.-M. Chemistryselect 2019, 4, 2404.  doi: 10.1002/slct.201900113

    89. [89]

      He, G.-K.; Li, Y.; Yu, Z.-L.; Chen, Z.-Q.; Tang, Y.-M.; Song, G.-L.; Loh, T. P. Org. Chem. Front. 2019, 6, 3644.  doi: 10.1039/C9QO00845D

    90. [90]

      Wu, F.; Alom, N. E.; Ariyarathna, J. P.; Nass, J.; Li, W. Angew. Chem., Int. Ed. 2019, 58, 11676.  doi: 10.1002/anie.201904662

    91. [91]

      Liu, J.-J.; Wong, C.-H. Tetrahedron Lett. 2002, 43, 3915.  doi: 10.1016/S0040-4039(02)00640-8

    92. [92]

      Yadav, J. S.; Reddy, B. V. S.; Reddy, C. S. Tetrahedron Lett. 2004, 45, 1291.  doi: 10.1016/j.tetlet.2003.11.102

    93. [93]

      Shinu, V. S.; Sheeja, B.; Purushothaman, E.; Bahulayan, D. Tetrahedron Lett. 2009, 50, 4838.  doi: 10.1016/j.tetlet.2009.06.022

    94. [94]

      Sun, K.; Zhu, Z.-H.; Sun, J.-J.; Liu, L.-L.; Wang, X. J. Org. Chem. 2016, 81, 1476.  doi: 10.1021/acs.joc.5b02593

    95. [95]

      Muñiz, K.; Wöste, T. Synthesis 2016, 48, 816.  doi: 10.1055/s-0035-1561313

    96. [96]

      Rezayati, S.; Hajinasiri, R.; Erfani, Z. Res. Chem. Intermed. 2016, 42, 2567.  doi: 10.1007/s11164-015-2168-1

    97. [97]

      Yan, M.; Zhou, D.-H.; Gao, Y.-J.; Ma, Y.-M. ChemistrySelect 2018, 3, 13006.  doi: 10.1002/slct.201802450

    98. [98]

      Cao, Y.; Zhou, D.-H.; Ma, Y.-M. Can. J. Chem. 2019, 97, 37.  doi: 10.1139/cjc-2018-0181

    99. [99]

      Gao, Y.-J.; Zhou, D.-H.; Ma, Y.-M. ChemistrySelect 2018, 3, 9374.  doi: 10.1002/slct.201801996

    100. [100]

      Sharma, P.; Sharma, R. K. Chirality 2019, 31, 91.  doi: 10.1002/chir.23039

    101. [101]

      Yang, K.; Li, Y.; Ma, Z.-Y.; Tang, L.; Yin, Y.; Zhang, H.; Li, Z.-Y.; Sun, X.-Q. Eur. J. Org. Chem. 2019, 2019, 5812.  doi: 10.1002/ejoc.201900960

    102. [102]

      Bao, H.-Y.; Hu, X.-J.; Zhang, J.; Liu, Y.-K. Tetrahedron 2019, 75, 130533.  doi: 10.1016/j.tet.2019.130533

    103. [103]

      Yang, K.; Niu, B.; Ma, Z.-Y.; Wang, H.; Lawrence, B.; Ge, H.-B. J. Org. Chem. 2019, 84, 14045.  doi: 10.1021/acs.joc.9b02202

    104. [104]

      Xu, W.-X.; Dai, X.-Q.; Xu, H.-J.; Weng, J.-Q. Chin. J. Org. Chem. 2018, 38, 2807 (in Chinese).
       

    105. [105]

      Kong, Y.-L.; Xu, W.-X.; Ye, F.-X.; Weng, J.-Q. Chin. J. Org. Chem. 2019, 39, 3065 (in Chinese).
       

    106. [106]

      Tréguier, B.; Roche, S. P. Org. Lett. 2014, 16, 278.  doi: 10.1021/ol403281t

    107. [107]

      Liang, D.-Q.; Li, X.-G.; Lan, Q.; Huang, W.-Z.; Yuan, L.; Ma, Y.-H. Tetrahedron Lett. 2016, 57, 2207.  doi: 10.1016/j.tetlet.2016.04.028

    108. [108]

      Liang, D.-Q.; Li, Y.-N.; Gao, S.-L.; Li, R.-L.; Li, X.-G.; Wang, B.-L.; Yang, H. Green Chem. 2017, 19, 3344.  doi: 10.1039/C7GC00356K

  • 加载中
    1. [1]

      Fengxiao Wang Zhiwei Miao Yaofeng Yuan . 有机磷化学与化学教学. University Chemistry, 2025, 40(8): 158-168. doi: 10.12461/PKU.DXHX202410077

    2. [2]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    3. [3]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    4. [4]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    5. [5]

      Yinuo Wang Ziyu Liu Hongxia Tan Jun Tong Dazhen Xu . Synthesis of Bromobenzoxazine: Introduce a Comprehensive Organic Chemistry Experiment Transformed from Undergraduate Research Innovation. University Chemistry, 2025, 40(10): 208-216. doi: 10.12461/PKU.DXHX202411077

    6. [6]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    7. [7]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    8. [8]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    9. [9]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    10. [10]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    11. [11]

      Ping LIGeng TANXin HUANGFuxing SUNJiangtao JIAGuangshan ZHUJia LIUJiyang LI . Green synthesis of metal-organic frameworks with open metal sites for efficient ammonia capture. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2063-2068. doi: 10.11862/CJIC.20250020

    12. [12]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    13. [13]

      . Synthesis and properties of metal‐organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1-2.

    14. [14]

      Xiaogang YANGXinya ZHANGJing LIHuilin WANGMin LIXiaotian WEIXinci WULufang MA . Synthesis, structure, and photoelectric properties of Zinc(Ⅱ)-triphenylamine based metal-organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2078-2086. doi: 10.11862/CJIC.20250167

    15. [15]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    16. [16]

      Xinwan ZhaoYue CaoMinjun LeiZhiliang JinTsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152

    17. [17]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    18. [18]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    19. [19]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    20. [20]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

Metrics
  • PDF Downloads(27)
  • Abstract views(3011)
  • HTML views(612)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return