Citation: Sun Xiaohua, Sun Chuance, Feng Lijun, Kang Congmin. Recent Progress in the Synthesis of Thieno[2, 3-d]pyrimidine Compounds via Tandem Cyclization[J]. Chinese Journal of Organic Chemistry, ;2020, 40(9): 2626-2640. doi: 10.6023/cjoc202004002 shu

Recent Progress in the Synthesis of Thieno[2, 3-d]pyrimidine Compounds via Tandem Cyclization

  • Corresponding author: Kang Congmin, cmkang@qust.edu.cn
  • Received Date: 1 April 2020
    Revised Date: 31 May 2020
    Available Online: 19 June 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21272131)the National Natural Science Foundation of China 21272131

Figures(34)

  • Thieno[2, 3-d]pyrimidine compounds are an important class of organic synthesis intermediates and pharmacologically active molecules, which not only have broad medical application prospect, but also worth researching. Therefore the synthesis of them has attracted much attention. The previous methods mainly apply tandem cyclization or one-pot multi-com-ponent reaction combined with microwave-assisted reaction or new catalysts to reach the purpose of shortening reaction time, reducing steps, enhancing yields and lowering costs. In this paper, the recent progress in the synthesis of thieno[2, 3-d]pyri-midine compounds via tandem cyclization in recent ten years, especially in the latest five years, is reviewed. The problems and limitations faced are discussed, and the development directions are also prospected.
  • 加载中
    1. [1]

      Hafez, H. N.; El-gazzar, A. B. A.; Nawwar, G. A. M. Eur. J. Med. Chem. 2010, 45, 1486.

    2. [2]

      Ashalatha, B. V.; Narayana, B.; Raj, K. K. V.; Kumari, N. S. Eur. J. Med. Chem. 2007, 42, 722.

    3. [3]

      Borate, H. B.; Annadate, R. A.; Vagh, S. S.; Pisal, M. M.; Deokate, S. B.; Arkile, M. A.; Jadhav N. J.; Nawale, L. U.; Sarkar, D. MedChemComm 2015, 6, 2213.

    4. [4]

      Al-Taisan, K. M.; Al-Hazimi, H.; Al-Shihry, S. S. Molecules 2010, 15, 3939.

    5. [5]

      El-Batanony, N. H. Period. Biol. 2017, 119, 29.

    6. [6]

      Bakavoli, M.; Bagherzadeh, G.; Vaseghifar, M.; Shiri, A.; Pordeli, P. J. Chem. Res. 2009, 654.

    7. [7]

      Kotaiah, Y.; Harikrishna, N.; Nagaraju, K.; Rao, C. V. Eur. J. Med. Chem. 2012, 58, 341.

    8. [8]

      Pedeboscq, S.; Gravier, D.; Casadebaig, F.; Hou, G.; Gissot, A.; Rey, C.; Ichas, F.; Giorgi, F. D.; Lartigue, L.; Pometan, J. P. Bioorg. Med. Chem. 2012, 20, 6726.

    9. [9]

      Mavrova, A. T.; Dimov, S.; Yancheva, D.; Rangelov, M.; Wesselinova, D.; Tsenov, J. A. Eur. J. Med. Chem. 2016, 123, 75.

    10. [10]

      Guo, Y. C.; Li, J.; Ma, J. L.; Yu, Z. R.; Wang, H. W.; Zhu, W. J.; Liao, X. C.; Zhao, Y. F. Chin. Chem. Lett. 2015, 26, 757.

    11. [11]

      Song, X. J.; Yang, P.; Gao, H.; Wang, Y.; Dong, X. G.; Tan, X. H. Chin. Chem. Lett. 2014, 25, 1007.

    12. [12]

      Mavrova, A. T.; Vuchev, D.; Anichina, K.; Vassilev, N. Eur. J. Med. Chem. 2010, 45, 5857.

    13. [13]

      Fruscia, P. D.; Zacharioudakis, E.; Liu, C.; Moniot, S.; Laohasinnarong, S.; Khongkow, M.; Harrison, L. M.; Koltsida, M.; Reynolds, C. R.; Schmidtkunz, K.; Jung, M.; Chapman, K. L.; Steegborn, C.; Dexter, D. T.; Sternberg, M. J. E.; Lam, E. W. F.; Fuchter, M. J. ChemMedChem 2015, 10, 76.

    14. [14]

      Zhao, A. L.; Liu, S.; Zhu, Y. M.; Wang, T.; Luo, J. Chin. J. Org. Chem. 2017, 37, 1879 (in Chinese).
       

    15. [15]

      Miwa, K.; Hitaka, T.; Imada, T.; Sasaki, S.; Yoshimatsu, M.; Kusaka, M.; Tanaka, A.; Nakata, D.; Furuya, S.; Endo, S.; Hamamura, K.; Kitazaki, T. J. Med. Chem. 2011, 54, 4999.

    16. [16]

      Markham, A. Drugs 2019, 79, 676.

    17. [17]

      Porvasnik, S. L.; Germain, S.; Embury, J.; Gannon, K. S.; Jacques, V.; Murray, J.; Byrne, B. J.; Shacham, S.; Al-Mousily, F. J. Pharm. Exp. Ther. 2010, 334, 365.

    18. [18]

      Svejda, B.; Kidd, M.; Giovinazzo, F.; Eltawil, K.; Gustafsson, B. I.; Pfragner, R.; Modlin, I. M. Cancer 2010, 116, 2905.

    19. [19]

      Wu, Y. L.; Yoshida, M.; Emoto, H.; Ishii, H.; Koga, K.; Tanaka, M. Jpn. J. Pharmacol. 2000, 83, 32.

    20. [20]

      Schreiber, S.; Schreiber, F.; Lockhart, S. N.; Horng, A.; Bejanin, A.; Landau, S. M.; Jagust, W. J. JAMA Neurol. 2017, 20, 3.

    21. [21]

      Beggs, J. E.; Tian, S.; Jones, G. G.; Xie, J.; Iadevaia, V.; Jenei, V.; Thomas, G.; Proud, C. G. Biochem. J. 2015, 467, 66.

    22. [22]

      Jin, X.; Merrett, J. E.; Tong, S.; Flower, B.; Xie, J.; Yu, R.; Tian, S.; Gao, L.; Zhao, J.; Wang, X.; Jiang, T.; Proud, C. G. Eur. J. Med. Chem. 2019, 162, 737.

    23. [23]

      Wang, Y. D.; Johnson, S. M.; Powell, D.; Mcginnis, J. P.; Miranda, M.; Rabindran, S. K. Bioorg. Med. Chem. Lett. 2005, 15, 3764.

    24. [24]

      Ouyang, L.; Zhang, L.; Liu, J.; Fu, L.; Yao, D.; Zhao, Y.; Zhang, S.; Wang, G.; He, G.; Liu, B. J. Med. Chem. 2017, 60, 9991.

    25. [25]

      Yang, P.; Wang, Y.; Duan, Z. C.; Shao, Y.; Nie, G. H.; Song, X. J.; Tian, D. T. Chin. J. Struct. Chem. 2013, 32, 1024.

    26. [26]

      Gao, H.; Fu, J.; Zhao, M. J.; Song, X. J.; Yang, P.; Zhang, Y. Chin. J. Struct. Chem. 2015, 34, 10

    27. [27]

      Huang, Y.; Dömling, A. Mol. Diversity 2011, 15, 4.

    28. [28]

      Zhang, B. Z.; Liu, Y.; Wang, L. Chin. J. Antibiot. 2012, 37, 579 (in Chinese).

    29. [29]

      Li, M. R.; Ding, Q. F.; Li, B. Y.; Yu, Y.; Huang, H.; Huang, F. Chin. J. Org. Chem. 2019, 39, 2714 (in Chinese).
       

    30. [30]

      Wang, Z. H.; Wang, L.; Wang, Z. M.; Li, P. H. Asian J. Org. Chem. 2019, 8, 3.  doi: 10.1002/ajoc.201800689

    31. [31]

      Jing, X.; Li, Z.; Wu, L.; Yan, C. J. Iran. Chem. Soc. 2011, 8, 112.

    32. [32]

      Fruscia, P. D.; Zacharioudakis, E.; Liu, C.; Moniot, S.; Laohasinnarong, S.; Khongkow, M.; Harrison, L. F.; Koltsida, K.; Reynolds, C. R.; Schmidtkunz, K.; Jung, M.; Chapman, K. L.; Steegborn, C.; Dexter, D. Y.; Sternberg, M. J. E.; Lam, E. W. F.; Fuchter, M. J. ChemMedChem 2015, 10, 70.

    33. [33]

      Han, F. B.; Lin, S. W.; Liu, P.; Liu, X. J.; Tao, J.; Deng, X. B.; Yi, C. Q.; Xu, H. ACS Med. Chem. Lett. 2015, 6, 436.

    34. [34]

      Gill, K. R.; Kumar, V.; Bishnoi, M.; Yadav, K.; Kondepudi, K. K.; Bariwal, J. Anti-Cancer Agents Med. Chem. 2017, 17, 706.

    35. [35]

      Pokhodylo, N. T.; Matiychuk, V. S.; Obushak, M. D. Tetrahedron 2008, 64, 1431.

    36. [36]

      Pokhodylo, N. T.; Shyyka, O. Y.; Matiychuk, V. S.; Obushak, M. D. ACS Comb. Sci. 2015, 17, 399.  doi: 10.1021/co5001376

    37. [37]

      Soares, M. I.; Lyra, A. C. F.; Henriques, M. S. C.; PaixŃo, J. A.; Melo, T. M. V. D. P. Tetrahedron 2015, 71, 3344.

    38. [38]

      Moustafa, A. H.; Ahmed, W. W.; Khodairy, A. J. Heterocycl. Chem. 2017, 54, 3493.

    39. [39]

      Hassan, A. A.; Khattab, R. R.; Wasfy, A. A. F.; Abuzeid, K. M.; Hassan, N. A. J. Heterocycl. Chem. 2018, 55, 908.

    40. [40]

      Fouad, M. M.; El-Bendary, E. R.; Suddek, G. M.; Shehata, I. A.; El-Kerdawy, M. M. Bioorg. Chem. 2018, 81, 588.

    41. [41]

      Ameen, M. A.; Ahmed, E. K.; Mahmoud, H. I.; Ramadan, M. J. Heterocycl. Chem. 2019, 56, 1832.

    42. [42]

      Mavrova, A. T.; Vuchev, D.; Anichina, K.; Vassilev, N. Eur. J. Med. Chem. 2010, 45, 5858.

    43. [43]

      Dai, Z. X.; Chen, H.; Liu, M. G.; Ding, M. W. Heterocycl. Commun. 2011, 17, 198.

    44. [44]

      El-Shehry, M. F.; Hosni, H. M.; Amr, A. E.; Ibrahim, A. A.; Fayed, A. A.; Elnaggar, D. H. Russ. J. Gen. Chem. 2019, 89, 1529.

    45. [45]

      Bakavoli, M.; Bagherzadeh, G.; Vaseghifar, M.; Shiri, A.; Pordeli, P. J. Chem. Res. 2009, 654.

    46. [46]

      Yang, P.; Wang, Y.; Duan, Z. C.; Shao, Y.; Nie, G. H.; Song, X. J.; Tian, D. T. Chin. J. Struct. Chem. 2013, 32, 1024.

    47. [47]

      Furuyama, T.; Noguchi, D.; Suzuki, Y.; Kobayashi, N. Can. J. Chem. 2014, 92, 767.

    48. [48]

      Gao, H.; Fu, J.; Zhao, M. J.; Song, X. J.; Yang, P.; Zhang, Y. Chin. J. Struct. Chem. 2015, 34, 10.

    49. [49]

      Atapour-Mashhad, H.; Soukhtanloo, M.; Massoudi, A.; Shiri, A.; Parizadeh, S. M.; Bakavoli, M. J. Heterocycl. Chem. 2017, 54, 367.

    50. [50]

      Sureja, D. K.; Vadalia, K. R. J. Saudi Chem. Soc. 2017, 22, 251.

    51. [51]

      Khatri, T. T.; Shah, V. H. J. Chil. Chem. Soc. 2017, 62, 3355.

    52. [52]

      Ramya, P. V. S.; Thatikonda, S.; Angapelly, S.; Babu, B. N.; Naidu, V. G. M.; Kamal, A. ChemistrySelect 2018, 3, 3102.

    53. [53]

      Zong, C. Y.; Zhang, L. J.; Gu, M. Y.; Sun, Y. Q. Chin. J. Org. Chem. 2018, 38, 1422 (in Chinese).
       

    54. [54]

      Elmetwally, S. A.; Saied, K. F.; Eissa, I. H.; Elkaeed, E. B. Bioorg. Chem. 2019, 88, 102944.  doi: 10.1016/j.bioorg.2019.102944

    55. [55]

      Han, Q.; Yin, Z. J.; Sui, J. J.; Wang, Q. M.; Sun, Y. Q. J. Braz. Chem. Soc. 2019, 30, 1487.

    56. [56]

      Poojari, S.; Naik, P. P.; Krishnamurthy, G. Tetrahedron Lett. 2012, 53, 4639.  doi: 10.1016/j.tetlet.2012.06.017

    57. [57]

      El-Sayed, N. N.; Abdelaziz, M. A.; Wardakhan, W. W.; Mohareb, R. M. Steroids 2016, 107, 99.

    58. [58]

      Amawi, H.; Karthikeyan, C.; Pathak, R.; Hussein, N.; Christman, R.; Robey, R.; Ashby Jr. C. R.; Trivedi, P.; Tiwari, A. K. Eur. J. Med. Chem. 2017, 138, 1058.

    59. [59]

      Ghashang, M. J. Iran. Chem. Soc. 2018, 15, 56.

    60. [60]

      Ghayour, F.; Shafiee, M. R. M.; Ghashang, M. Main Group Met. Chem. 2018, 41, 23.

    61. [61]

      Shafighi, S.; Shafiee, M. R. M.; Ghashang, M. J. Sulfur Chem. 2018, 39, 404.

    62. [62]

      Brough, P. A.; Barril, X.; Borgognoni, J.; Chene, P.; Davies, N. G. M.; Davis, B.; Drysdale, M. J.; Dymock, B.; Eccles, S. A.; Garcia-Echeverria, C.; Fromont, C.; Hayes, A.; Hubbard, R. E.; Jordan, A. M.; Jensen, M. R.; Massey, A.; Merrett, A.; Padfield, A.; Parsons, R.; Radimerski, T.; Raynaud, F. I.; Robertson, A.; Roughley, S. D.; Schoepfer, J.; Simmonite, H.; Sharp, S. Y.; Surgenor, A.; Valenti, M.; Walls, S.; Webb, P.; Wood, M.; Workman, P.; Wright, L. J. Med. Chem. 2009, 52, 4796.

    63. [63]

      Kobayashi, K.; Suzuki, T.; Kozuki, T.; Matsumoto, N.; Hiyoshi, H.; Umezu, K. Heterocycles 2012, 85, 1407.

    64. [64]

      Wilding, B.; Faschauner, S.; Klempier, N. Tetrahedron Lett. 2015, 56, 4487.

    65. [65]

      Tolba, M. S.; El-Dean, A. M. K.; Ahmed, M.; Hassanien, R.; Farouk, M. ARKIVOC 2017, 5, 231.

    66. [66]

      Ho, Y. W.; Yao, W. H. J. Chem. 2013, 2013, 5.

    67. [67]

      Xu, J.; Fan, W. G.; Popowycz, F.; Queneau, Y.; Gu, Y. L. Chin. J. Org. Chem. 2019, 39, 2131 (in Chinese).
       

    68. [68]

      Tang, M.; Xing, D.; Cai, M. Q.; Hu, W. H. Chin. J. Org. Chem. 2014, 34, 1268 (in Chinese).
       

    69. [69]

      Kusebauch, U.; Beck, B.; Messer, K.; Herdtweck, E.; Domling, A. Org. Lett. 2003, 5, 4021.  doi: 10.1021/ol035010u

    70. [70]

      Shi, T.; Kaneko, L.; Sandino, M.; Busse, R.; Zhang, M.; Mason, D.; Machulis, J.; Ambrose, A. J.; Zhang, D. D.; Chapman, E. ACS Sustain. Chem. Eng. 2018, 7, 1526.

    71. [71]

      Shi, T.; Zerio, C.; Sivinski, J.; Ambrose, A. J.; Moore, K. T.; Buckley, T.; Kaneko, L.; Zhang, M.; Zhang, D. D.; Chapman, E. Eur. J. Org. Chem. 2019, 3270.

  • 加载中
    1. [1]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    2. [2]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    3. [3]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    4. [4]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    5. [5]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    6. [6]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    7. [7]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    8. [8]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    9. [9]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    10. [10]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    11. [11]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    12. [12]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    13. [13]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

    14. [14]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    15. [15]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    16. [16]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    17. [17]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    18. [18]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    19. [19]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    20. [20]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

Metrics
  • PDF Downloads(19)
  • Abstract views(1020)
  • HTML views(199)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return