Citation: Xu Zi-Yue, Luo Yi, Wang Hui, Zhang Dan-Wei, Li Zhan-Ting. Porous Organic Polymers as Heterogeneous Catalysts for Visible Light-Induced Organic Transformations[J]. Chinese Journal of Organic Chemistry, ;2020, 40(11): 3777-3793. doi: 10.6023/cjoc202003070 shu

Porous Organic Polymers as Heterogeneous Catalysts for Visible Light-Induced Organic Transformations

  • Corresponding author: Zhang Dan-Wei, zhangdw@fudan.edu.cn Li Zhan-Ting, ztli@fudan.edu.cn
  • Received Date: 31 March 2020
    Revised Date: 22 April 2020
    Available Online: 30 April 2020

    Fund Project: the National Natural Science Foundation of China 21890732the National Natural Science Foundation of China 21921003Project supported by the National Natural Science Foundation of China (Nos. 21890732, 21890730, 21921003)the National Natural Science Foundation of China 21890730

Figures(19)

  • The recent applications of porous organic polymers (POPs) as heterogeneous catalysts for visible light-induced organic transformations are summarized. POPs are constructed from conjugated organic monomers, having the features of convenient synthesis and characterization, high stability for quick recovery and reuse, structural diversity as well as high modifiability. POPs possess rigid conjugated frameworks, relatively large surface areas, tunable porosity and typically insoluble in water or organic solvents, and thus ideal platforms for the development of heterogeneous catalysts. Through incorporating conjugated sensitizer units into the backbones or attaching the sensitizers to the backbone linkers, POPs can be developed as efficient heterogeneous photocatalysts for visible light-induced organic transformations. Due to their high stability and insolubility, POP catalysts can be easily recovered through filtration or centrifugation and recycled. POP-based photocatalysis combines visible light utility and catalyst recycling and thus represents a green and sustainable technique.
  • 加载中
    1. [1]

      Cole-Hamilton, D. J.; Tooze, R. P. In Catalyst Separation, Recovery and Recycling, Springer, Dordrecht, 2006, pp. 1~8.

    2. [2]

      Heterogeneous Catalysis: Fundamentals and Applications, Ed.: Ross, J. R. H., Elsevier, Amsterdam, 2012, p. 222.

    3. [3]

      (a) Wang, Z.; Chen, G.; Ding, K. Chem. Rev. 2009, 109, 322.
      (b) Fechete, I.; Wang, Y.; Vedrine, J. C. Catal. Today 2012, 189, 2.
      (c) Thomas, J. M. Top. Catal. 2014, 57, 1115.
      (d) Sun, Z.; Liu, Y.; Chen, J.; Huang, C.; Tu, T. ACS Catal. 2015, 5, 6573.
      (e) Kaneda, K.; Mizugaki, T. Green Chem. 2019, 21, 1361.

    4. [4]

      (a) Lin, W. J. Solid State Chem. 2005, 178, 2486.
      (b) Zeng, L.; Guo, X.; He, C.; Duan, C. ACS Catal. 2016, 6, 7935.
      (c) Ma, D.; Li, B.; Shi, Z. Chin. Chem. Lett. 2018, 29, 827.
      (d) Wang, P.; Deng, L. Chin. J. Chem. 2018, 36, 1222.
      (e) Hou, J.; Hao, J.; Wang, Y.; Liu, J. Chem. Res. Chin. Univ. 2019, 35, 860.
      (f) Kang, X.-M.; Shi, Y.; Cao, C.-S.; Zhao, B. Sci. China: Chem. 2019, 62, 622.
      (g) Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C.-Y. Chem. Soc. Rev. 2014, 43, 6011.
      (h) Wu, Z.; Shi, Y.; Li, C.; Niu, D.; Chu, Q.; Xiong, W.; Li, X. Acta Chim. Sinica 2019, 77, 758 (in Chinese).
      (武卓敏, 石勇, 李春艳, 牛丹阳, 楚奇, 熊巍, 李新勇, 化学学报, 2019, 77, 758.)
      (i) Liu, Y.; Xuan, W.; Cui, Y. Adv. Mater. 2010, 22, 4112.

    5. [5]

      (a) Ding, S.-Y.; Wang, W. Chem. Soc. Rev. 2013, 42, 548.
      (b) Bisbey, R. P.; Dichtel, W. R. ACS Cent. Sci. 2017, 3, 533.
      (c) Peng, Z.; Ding, H.; Chen, R.; Gao, C.; Wang, C. Acta Chim. Sinica 2019, 77, 681 (in Chinese).
      (彭正康, 丁慧敏, 陈如凡, 高超, 汪成, 化学学报, 2019, 77, 681.)
      (d) Liang, R.-R.; Zhao, X. Org. Chem. Front. 2018, 5, 3341.
      (e) Yuan, F.; Tan, J.; Guo, J. Sci. China: Chem. 2018, 61, 143.
      (f) Wang, T.; Xue, R.; Wei, Y.; Wang, M.; Guo, H.; Yang, W. Prog. Chem. 2018, 30, 753.
      (g) Kandambeth, S.; Dey, K.; Banerjee, R. J. Am. Chem. Soc. 2019, 141, 1807.

    6. [6]

      (a) Zhang, Y.; Riduan, S. N. Chem. Soc. Rev. 2012, 41, 2083.
      (b) Sun, Q.; Dai, Z.; Meng, X.; Xiao, F.-S. Chem. Soc. Rev. 2015, 44, 6018.
      (c) Kramer, S.; Bennedsen, N. R.; Kegnaes, S. ACS Catal. 2018, 8, 6961.
      (d) Wei, Z.; Li, Y.; Wang, J.; Li, H.; Wang, Y. Chin. Chem. Lett. 2018, 29, 815.
      (e) Li, C.-Y.; Yan, L.; Wang, W.-L.; Wang, Y.-Q.; Jiang, M.; Ding, Y.-J. Chin. Polym. Bull. 2018, 6, 32 (in Chinese).
      (李存耀, 严丽, 汪文龙, 王玉清, 姜淼, 丁云杰, 高分子通报, 2018, 6, 32.)
      (f) Pang, C.; Luo, S.; Hao, Z.; Gao, J.; Huang, Z.; Yu, J.; Yu, S.; Wang, Z. Chin. J. Org. Chem. 2018, 38, 2606 (in Chinese).
      (庞楚明, 罗时荷, 郝志峰, 高健, 黄召昊, 余家海, 余思敏, 汪朝阳, 有机化学, 2018, 38, 2606.)
      (g) Zhang, T.; Xing, G.; Chen, W.; Chen, L. Mater. Chem. Front. 2020, 4, 332.
      (h) Liang, J.; Huang, Y.-B.; Cao, R. Coord. Chem. Rev. 2019, 378, 32.
      (i) Zhao, Y.; Ma, W.; Xu, Y.; Zhang, C.; Wang, Q.; Yang, T.; Gao, X.; Wang, F.; Yan, C.; Jiang, J.-X. Macromolecules 2018, 51, 9502.
      (j) Yuan, Y.; Huang, H.; Chen, L.; Chen, Y. Macromolecules 2017, 50, 4993.
      (k) Kong, S.; Malik, A. U.; Qian, X.; Shu, M.; Xiao, W. Chin. J. Org. Chem. 2018, 38, 656 (in Chinese).
      (孔胜男, Abaid Ullah Malik, 钱雪峰, 舒谋海, 肖文德, 有机化学, 2018, 38, 656.)
      (l) Liu, M.; Zhou, B.; Zhou, L.; Xie, Z.; Li, S.; Chen, L. J. Mater. Chem. A 2018, 6, 9860.
      (m) Kong, S.; Qian, X.; Shu, M.; Xiao, W. Chin. J. Org. Chem. 2018, 38, 2754 (in Chinese).
      (孔胜男, 钱雪峰, 舒谋海, 肖文德, 有机化学, 2018, 38, 2754.)
      (n) Gao, X.; Shu, C.; Zhang, C.; Ma, W.; Ren, S.-B.; Wang, F.; Chen, Y.; Zeng, J. H.; Jiang, J.-X. J. Mater. Chem. A 2020, 8, 2404.

    7. [7]

      (a) Hennig, H.; Rehorek, D.; Stich, R.; Weber, L. Pure Appl. Chem. 1990, 62, 1489.
      (b) Chatterjee, D.; Dasgupta, S. J. Photochem. Photobiol. C 2005, 6, 186.
      (c) Zhao, J.; Chen, C.; Ma, W. Top. Catal. 2005, 35, 269.
      (d) Tung, C.-H.; Wu, L.-Z.; Zhang, L.-P.; Chen, B. Acc. Chem. Res. 2003, 36, 39.

    8. [8]

      (a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
      (b) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102.
      (c) Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828.
      (d) Xi, Y.; Yi, H.; Lei, A. Org. Biomol. Chem. 2013, 11, 2387.
      (e) Xie, J.; Jin, H.; Xu, P.; Zhu, C. Tetrahedron Lett. 2014, 55, 36.
      (f) Lang, X.; Ma, W.; Chen, C.; Ji, H.; Zhao, J. Acc. Chem. Res. 2014, 47, 355.
      (g) Cao, M.-Y.; Ren, X.; Lu, Z. Tetrahedron Lett. 2015, 56, 3732.
      (h) Zhang, X.; Rakesh, K. P.; Ravindar, L.; Qin, H.-L. Green Chem. 2018, 20, 4790.
      (i) Jia, K.; Chen, Y. Chem. Commun. 2018, 54, 6105.
      (j) Zhang, H.; Yu, S. Chin. J. Org. Chem. 2019, 39, 95 (in Chinese).
      (张昊, 俞寿云, 有机化学, 2019, 39, 95.)
      (k) Chen, B.; Wu, L.-Z.; Tung, C.-H. Acc. Chem. Res. 2018, 51, 2512.
      (l) Dai, J.; Lei, W.; Liu, Q. Acta Chim. Sinica 2019, 77, 911 (in Chinese).
      (戴建玲, 雷文龙, 刘强, 化学学报, 2019, 77, 911.)
      (m) Liu, Y.-C.; Zheng, X.; Huang, P.-Q. Acta Chim. Sinica 2019, 77, 850 (in Chinese).
      (刘玉成, 郑啸, 黄培强, 化学学报, 2019, 77, 850.)
      (n) Chen, D.; Liu, J.; Zhang, X.; Jiang, H.; Li, J. Chin. J. Org. Chem. 2019, 39, 3353 (in Chinese).
      (陈丹, 刘剑沉, 张馨元, 蒋合众, 李加洪, 有机化学, 2019, 39, 3353.)
      (o) Yi, X.; Huang, F.; Baell, J. B.; Huang, H.; Yu, Y. Prog. Chem. 2019, 31, 505.
      (p) Wang, T.-X.; Liang, H.-P.; Anito, D. S.; Ding, X.; Han, B.-H. J. Mater. Chem. A 2020, 8, 7003.

    9. [9]

      Ma, T.; Kapustin, E. A.; Yin, S. X.; Liang, L.; Zhou, Z.; Niu, J.; Li, L.-H.; Wang, Y.; Su, J.; Li, J.; Wang, X.; Wang, W. D.; Wang, W.; Sun, J.; Yaghi, O. M. Science 2018, 361, 48.  doi: 10.1126/science.aat7679

    10. [10]

      (a) Fang, Q.; Wang, J.; Gu, S.; Kaspar, R. B.; Zhuang, Z.; Zheng, J.; Guo, H.; Qiu, S.; Yan, Y. J. Am. Chem. Soc. 2015, 137, 8352.
      (b) Gao, Z.-Z.; Wang, Z.-K.; Wei, L.; Yin, G.; Tian, J.; Liu, C.-Z.; Wang, H.; Zhang, D.-W.; Zhang, Y.-B.; Li, X.; Liu, Y.; Li, Z.-T. ACS Appl. Mater. Interfaces 2020, 12, 1404.

    11. [11]

      (a) McKeown, N. B.; Budd, P. M.; Msayib, K. J.; Ghanem, B. S.; Kingston, H. J.; Tattershall, C. E.; Makhseed, S.; Reynolds, K. J.; Fritsch, D. Chem.-Eur. J. 2005, 11, 2610.
      (b) McKeown, N. B. Sci. China: Chem. 2017, 60, 1023.

    12. [12]

      (a) Zhou, Y.-B.; Zhan, Z.-P. Chem.-Asian J. 2018, 13, 9.
      (b) He, Q.; Zhang, C.; Li, X.; Wang, X.; Mu, P.; Jiang, J. Acta Chim. Sinica 2018, 76, 202 (in Chinese).
      (贺倩, 张崇, 李晓, 王雪, 牟攀, 蒋加兴, 化学学报, 2018, 76, 202.)
      (c) Lee, J.-S. M.; Cooper, A. I. Chem. Rev. 2020, 120, 2171.

    13. [13]

      (a) Yuan, Y.; Zhu, G. ACS Cent. Sci. 2019, 5, 409.
      (b) Yan, T.; Xing, G.; Ben, T.; Qiu, S. Chem. J. Chin. Univ. 2018, 39, 1072 (in Chinese).
      (闫婷婷, 邢国龙, 贲腾, 裘式纶, 高等学校化学学报, 2018, 39, 1072.)
      (c) Xia, L.; Zhang, H.; Feng, B.; Yang, D.; Bu, N.; Zhao, Y.; Yan, Z.; Li, Z.; Yuan, Y.; Zhao, X. Chem. J. Chin. Univ. 2019, 40, 2456 (in Chinese).
      (夏立新, 张红翠, 冯彬, 杨东奇, 布乃顺, 赵云波, 闫卓君, 李樟楠, 元野, 赵晓君, 高等学校化学学报, 2019, 40, 2456.)
      (d) Ben, T.; Qiu, S. CrystEngComm 2013, 15, 17.

    14. [14]

      (a) Hou, S.; Tan, B. Macromolecules 2018, 51, 2923.
      (b) Gao, H.; Ding, L.; Bai, H.; Li, L. ChemSusChem 2017, 10, 618.
      (c) Tan, L.; Tan, B. Chem. Soc. Rev. 2017, 46, 3322.

    15. [15]

      (a) Chen, Q.; Luo, M.; Hammershøj, P.; Zhou, D.; Han, Y.; Laursen, B. W.; Yan, C.-G.; Han, B.-H. J. Am. Chem. Soc. 2012, 134, 6084.
      (b) Chen, Q.; Han, B.-H. Macromol. Rapid Commun. 2018, 39, 1800040.

    16. [16]

      Su, C.; Tandiana, R.; Tian, B.; Sengupta, A.; Tang, W.; Su, J.; Loh, K. P. ACS Catal. 2016, 6, 3594.  doi: 10.1021/acscatal.6b00443

    17. [17]

      (a) Shang, T.-Y.; Lu, L.-H.; Cao, Z.; Liu, Y.; He, W.-M.; Yu, B. Chem. Commun. 2019, 55, 5408.
      (b) Yuan, W.; Yang, H.; Zhang, M.; Hu, D.; Wan, S.; Li, Z.; Shi, C.; Sun, N.; Tao, Y.; Huang, W. Chin. Chem. Lett. 2019, 30, 1955.
      (c) Bi, K.; Tan, R.; Hao, R.; Miao, L.; He, Y.; Wu, X.; Zhang, J.; Rui, X. Chin. Chem. Lett. 2019, 30, 545.
      (d) Li, J.; Grimsdale, A. C. Chem. Soc. Rev. 2010, 39, 2399.

    18. [18]

      Luo, J.; Zhang, X.; Zhang, J. ACS Catal. 2015, 5, 2250.  doi: 10.1021/acscatal.5b00025

    19. [19]

      (a) Wang, P.-Z.; Chen, J.-R.; Xiao, W.-J. Org. Biomol. Chem. 2019, 17, 6936.
      (b) Chen, X.; Chen, J.; Bao, Z.; Yang, Q.; Yang, Y.; Ren, Q.; Zhang, Z. Chin. J. Org. Chem. 2019, 39, 1681 (in Chinese).
      (陈晓玲, 陈静雯, 鲍宗必, 杨启炜, 杨亦文, 任其龙, 张治国, 有机化学, 2019, 39, 1681.)
      (c) Huang, W.; Cheng, X. Synlett 2017, 28, 148.

    20. [20]

      Zhi, Y.; Yao, Z.; Jiang, W.; Xia, H.; Shi, Z.; Mu, Y.; Liu, X. ACS Appl. Mater. Interfaces 2019, 11, 37578.  doi: 10.1021/acsami.9b10958

    21. [21]

      Zhi, Y.; Li, K.; Xia, H.; Xue, M.; Mu, Y.; Liu, X. J. Mater. Chem. A 2017, 5, 8697.  doi: 10.1039/C7TA02205K

    22. [22]

      Luo, J.; Lu, J.; Zhang, J. J. Mater. Chem. A 2018, 6, 15154.  doi: 10.1039/C8TA05329D

    23. [23]

      (a) Rueping, M.; Vila, C.; Koenigs, R. M.; Poscharny, K.; Fabry, D. C. Chem. Commun. 2011, 47, 2360.
      (b) Wang, H.; Zheng, C.; Zhao, G. Chin. J. Chem. 2019, 37, 1111.
      (c) Ye, J.; Huang, P. Chin. J. Org. Chem. 2018, 38, 2215 (in Chinese).
      (叶剑良, 黄培强, 有机化学, 2018, 38, 2215.)
      (d) Cao, W.; Liu, X.; Feng, X. Chin. Chem. Lett. 2018, 29, 1201.

    24. [24]

      Luo, J.; Zhang, X.; Lu, J.; Zhang, J. ACS Catal. 2017, 7, 5062.  doi: 10.1021/acscatal.7b01010

    25. [25]

      Chen, Y.; Lu, L.-Q.; Yu, D.-G.; Zhu, C.-J.; Xiao, W.-J. Sci. China: Chem. 2019, 62, 24.  doi: 10.1007/s11426-018-9399-2

    26. [26]

      Feng, L.-J.; Chen, Q.; Zhu, J.-H.; Liu, D.-P.; Zhao, Y.-C.; Han, B.-H. Polym. Chem. 2014, 5, 3081.  doi: 10.1039/c3py01430d

    27. [27]

      Zhang, J.; Chen, W.; Rojas, A. J.; Jucov, E. V.; Timofeeva, T. V.; Parker, T. C.; Barlow, S.; Marder, S. R. J. Am. Chem. Soc. 2013, 135, 16376.  doi: 10.1021/ja4095878

    28. [28]

      Li, R.; Byun, J.; Huang, W.; Ayed, C.; Wang, L.; Zhang, K. A. I. ACS Catal. 2018, 8, 4735.  doi: 10.1021/acscatal.8b00407

    29. [29]

      Wang, Z. J.; Ghasimi, S.; Landfester, K.; Zhang, K. A. I. J. Mater. Chem. A 2014, 2, 18720.  doi: 10.1039/C4TA03887H

    30. [30]

      Wang, Z. J.; Li, R.; Landfester, K.; Zhang, K. A. I. Polymer 2017, 126, 291.  doi: 10.1016/j.polymer.2017.04.052

    31. [31]

      Li, R.; Wang, Z.-J.; Wang, L.; Ma, B. C.; Ghasimi, S.; Lu, H.; Landfester, K.; Zhang, K. A. I. ACS Catal. 2016, 6, 1113.  doi: 10.1021/acscatal.5b02490

    32. [32]

      Zhang, K.; Kopetzki, D.; Seeberger, P. H.; Antonietti, M.; Vilela, F. Angew. Chem., Int. Ed. 2013, 52, 1432.  doi: 10.1002/anie.201207163

    33. [33]

      Li, R.; Ma, B. C.; Huang, W.; Wang, L.; Wang, D.; Lu, H.; Landfester, K.; Zhang, K. A. I. ACS Catal. 2017, 7, 3097.  doi: 10.1021/acscatal.7b00490

    34. [34]

      Lu, J.; Khetrapal, N. S.; Johnson, J. A.; Zeng, X. C.; Zhang, J. J. Am. Chem. Soc. 2016, 138, 15805.  doi: 10.1021/jacs.6b08620

    35. [35]

      Zhi, Y.; Ma, S.; Xia, H.; Zhang, Y.; Shi, Z.; Mu, Y.; Liu, X. Appl. Catal. B 2019, 244, 36.  doi: 10.1016/j.apcatb.2018.11.032

    36. [36]

      Wu, W.; Xu, S.; Qi, G.; Zhu, H.; Hu, F.; Liu, Z.; Zhang, D.; Liu, B. Angew. Chem., Int. Ed. 2019, 58, 3062.  doi: 10.1002/anie.201811067

    37. [37]

      Xu, W.; Dai, X.; Xu, H.; Weng, J. Chin. J. Org. Chem. 2018, 38, 2807 (in Chinese).
       

    38. [38]

      Jiang, J.-X.; Li, Y.; Wu, X.; Xiao, J.; Adams, D. J.; Cooper, A. I. Macromolecules 2013, 46, 8779.  doi: 10.1021/ma402104h

    39. [39]

      Li, X.; Zhang, Y. C.; Zhao, Y.; Zhao, H. P.; Zhang, B.; Cai, T. Macromolecules 2020, 53, 1550.  doi: 10.1021/acs.macromol.0c00106

    40. [40]

      (a) Wang, S.; Song, K.; Zhang, C.; Shu, Y.; Li, T.; Tan, B. J. Mater. Chem. A 2017, 5, 1509.
      (b) Dou, Z.; Xu, L.; Zhi, Y.; Zhang, Y.; Xia, H.; Mu, Y.; Liu, X. Chem.-Eur. J. 2016, 22, 9919.

    41. [41]

      Liu, X.; A, S.; Zhang, Y.; Luo, X.; Xia, H.; Li, H.; Mu, Y. RSC Adv. 2014, 4, 6447.  doi: 10.1039/c3ra46988c

    42. [42]

      Li, Y.; Sun, B.; Zhou, Y.; Yang, W. Appl. Organomet. Chem. 2017, 31, 3578.  doi: 10.1002/aoc.3578

    43. [43]

      Jiang, J.; Luo, R.; Zhou, X.; Chen, Y.; Ji, H. Adv. Synth. Catal. 2018, 360, 4402.  doi: 10.1002/adsc.201800730

    44. [44]

      (a) Cohen, S. M. Chem. Rev. 2012, 112, 970.
      (b) Cohen, S. M. J. Am. Chem. Soc. 2017, 139, 2855.

    45. [45]

      Monterde, C.; Navarro, R.; Iglesias, M.; Sánchez, F. ACS Appl. Mater. Interfaces 2019, 11, 3459.  doi: 10.1021/acsami.8b18053

    46. [46]

      Liras, M.; Pintado-Sierra, M.; Iglesias, M.; Sánchez, F. J. Mater. Chem. A 2016, 4, 17274.  doi: 10.1039/C6TA07696C

    47. [47]

      Li, L.; Cui, W.; Su, W.; Wang, Y.; Wang, R. Nano Res. 2016, 9, 779.  doi: 10.1007/s12274-015-0957-x

    48. [48]

      (a) Angerani, S.; Winssinger, N. Chem.-Eur. J. 2019, 25, 6661.
      (b) Marzo, L.; Pagire, S. K.; Reiser, O.; König, B. Angew. Chem., Int. Ed. 2018, 57, 10034.
      (c) Wu, Y.-P.; Yan, M.; Gao, Z.-Z.; Hou, J.-L.; Wang, H.; Zhang, D.-W.; Zhang, J.; Li, Z.-T. Chin. Chem. Lett. 2019, 30, 1383.
      (d) Naumann, R.; Goez, M. Green Chem. 2019, 21, 4470.

    49. [49]

      Xie, Z.; Wang, C.; deKraffit, K. E.; Lin, W. J. Am. Chem. Soc. 2011, 133, 2056.  doi: 10.1021/ja109166b

    50. [50]

      Liang, H.-P.; Chen, Q.; Han, B.-H. ACS Catal. 2018, 8, 5313.  doi: 10.1021/acscatal.7b04494

    51. [51]

      Xu, Z.-Y.; Luo, Y.; Zhang, D.-W.; Wang, H.; Sun, X.-W.; Li, Z.-T. Green Chem. 2020, 22, 136.  doi: 10.1039/C9GC03688A

    52. [52]

      Xue, F.; Wang, F.-L.; Liu, J.-Z.; Di, J.-M.; Liao, Q.; Lu, H.-F.; Zhu, M.; He, L.-P.; He, H.; Zhang, D.; Song, H.; Liu, X.-Y.; Qin, Y. Angew. Chem., Int. Ed. 2018, 57, 6667.  doi: 10.1002/anie.201802710

    53. [53]

      Luo, Y.; Xu, Z.-Y.; Wang, H.; Sun, X.-W.; Li, Z.-T.; Zhang, D.-W. ACS Macro Lett. 2020, 9, 90.  doi: 10.1021/acsmacrolett.9b00872

    54. [54]

      Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77.  doi: 10.1126/science.1161976

  • 加载中
    1. [1]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    2. [2]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    3. [3]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    4. [4]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    5. [5]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    6. [6]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    7. [7]

      Min ZHUYuxin WANGXiao LIYaxu XUJunwen ZHUZihao WANGYu ZHUXiaochen HUANGDan XUMonsur Showkot Hossain Abul . Construction of AgVO3/ZIF-8 composites for enhanced degradation of tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 994-1006. doi: 10.11862/CJIC.20240392

    8. [8]

      Jia-Cheng HouWei CaiHong-Tao JiLi-Juan OuWei-Min He . Recent advances in semi-heterogenous photocatalysis in organic synthesis. Chinese Chemical Letters, 2025, 36(2): 110469-. doi: 10.1016/j.cclet.2024.110469

    9. [9]

      Ting ShiZiyang SongYaokang LvDazhang ZhuLing MiaoLihua GanMingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559

    10. [10]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    11. [11]

      Xin HeFeng LiuTao Tu . Double redox-mediated intrinsic semiconductor photocatalysis: Practical semi-heterogeneous synthesis. Chinese Chemical Letters, 2025, 36(3): 110621-. doi: 10.1016/j.cclet.2024.110621

    12. [12]

      Yingxiao ZongYangfei WeiXiaoqing LiuJunke WangHuanfang GuoJunli WangZhuangzhi ShiTao TuCheng YangChongyang WangLeyong Wang . The 4th CCL Organic Chemistry Forum held in Zhangye. Chinese Chemical Letters, 2024, 35(8): 109743-. doi: 10.1016/j.cclet.2024.109743

    13. [13]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    14. [14]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    15. [15]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    16. [16]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    20. [20]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

Metrics
  • PDF Downloads(25)
  • Abstract views(3667)
  • HTML views(430)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return