Citation: Liu Zilin, Zhang Xiaojie, Zhang Heng, Jiang Hui, Zhao Xuemei, Shi Linlin, Zhu Xinju, Hao Xinqi, Song Maoping. Phathalocyanine Metal Complexes (M=Fe, Co, and Cu) Catalyzed Aerobic Oxidation of 2-Amino-benzyl Alcohols to Access Quinazolines and Quinolines[J]. Chinese Journal of Organic Chemistry, ;2020, 40(9): 2755-2763. doi: 10.6023/cjoc202003068 shu

Phathalocyanine Metal Complexes (M=Fe, Co, and Cu) Catalyzed Aerobic Oxidation of 2-Amino-benzyl Alcohols to Access Quinazolines and Quinolines

  • Corresponding author: Zhao Xuemei, zxm@zzu.edu.cn Shi Linlin, slinlinzzu@163.com
  • Received Date: 31 March 2020
    Revised Date: 27 May 2020
    Available Online: 12 June 2020

    Fund Project: the National Natural Science Foundation of China 21803059the National Natural Science Foundation of China U1904212the National Natural Science Foundation of China 21672192Project supported by the National Natural Science Foundation of China (Nos. 21672192, 21803059, U1904212, 21929101)the National Natural Science Foundation of China 21929101

Figures(4)

  • Phathalocyanine metal complexes catalyzed oxidative condensation of 2-aminobenzyl alcohols with nitriles and ketones has been developed under air to afford quinazolines and quinolines, respectively. After systematic investigation, iron(Ⅱ) phathalocyanine displayed higher catalytic activity in quinazoline synthesis and copper(Ⅱ) phathalocyanine showed higher efficiency in quinoline preparation. Under the optimized conditions, various nitriles and ketones were well adaptted to give the corresponding products in good yields.
  • 加载中
    1. [1]

      (a) Juvale, K.; Gallus, J.; Wiese, M. Bioorg. Med. Chem. 2013, 21, 7858.
      (b) Khan, I.; Ibrar, A.; Abbas, N.; Saeed, A. Eur. J. Med. Chem. 2014, 76, 193.
      (c) Khan, I.; Ibrar, A.; Ahmed, W.; Saeed, A. Eur. J. Med. Chem. 2015, 90, 124.
      (d) Connolly, D. J.; Cusack, D.; O'Sullivan, T. P.; Guiry, P. J. Tetrahedron 2005, 61, 10153.

    2. [2]

      (a) Yan, Y.; Zhang, Y.; Feng, C.; Zha, Z.; Wang, Z. Angew. Chem.. Int. Ed. 2012, 51, 8077.
      (b) Panja, S. K.; Dwivedi, N.; Saha, S. Tetrahedron Lett. 2012, 53, 6167.
      (c) Chen, Z.; Chen, J.; Liu, M.; Ding, J.; Gao, W.; Huang, X.; Wu, H. J. Org. Chem. 2013, 78, 11342.
      (d) Gopalaiah, K.; Saini, A.; Devi, A. Org. Biomol. Chem. 2017, 15, 5781.
      (e) Sarode, S. A.; Jadhav, V. G.; Nagarkar, J. M. Tetrahedron Lett. 2017, 58, 779.
      (f) Deshmukh, D. S.; Bhanage, B. M. Synlett 2018, 29, 979.

    3. [3]

      (a) Han, B.; Yang, X.-L.; Wang, C.; Bai, Y.-W.; Pan, T.-C.; Chen, X.; Yu, W. J. Org. Chem. 2012, 77, 1136.
      (b) Li, C.; An, S.; Zhu, Y.; Zhang, J.; Kang, Y.; Liu, P.; Wang, Y.; Li, J. RSC Adv., 2014, 4, 49888.
      (c) Zhang, Z.; Wang, M.; Zhang, C.; Zhang, Z.; Lu, J.; Wang, F. Chem. Commun., 2015, 51, 9205.
      (d) Chen, X.; Chen, T.; Ji, F.; Zhou, Y.; Yin, S.-F. Catal. Sci. Technol. 2015, 5, 2197.
      (e) Tiwari, A. R.; Bhanage, B. M. Org. Biomol. Chem. 2016, 14, 10567.
      (f) Yang, X.-L.; Meng, Q.-Y.; Gao, X.-W.; Lei, T.; Wu, C.-J.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Asian J. Org. Chem. 2017, 6, 449.
      (g) Tiwari, A. R.; Bhanage, B. M. Asian J. Org. Chem. 2017, 6, 831.
      (h) Chatterjee, T.; Kim, D. I.; Cho, E. J. J. Org. Chem. 2018, 83, 7423.

    4. [4]

      (a) Malakar, C. C.; Baskakova, A.; Conrad, J.; Beifuss, U. Chem. Eur. J., 2012, 18, 8882.
      (b) Liu, X.; Fu, H.; Jiang, Y.; Zhao, Y. Angew. Chem.. Int. Ed. 2009, 48, 348.
      (c) Xu, C.; Jia, F.-C.; Zhou, Z.-W.; Zheng, S.-J.; Li, H.; Wu, A.-X. J. Org. Chem. 2016, 81, 3000.

    5. [5]


      (d) Raut, A. B.; Tiwari, A. R.; Bhanage, B. M. ChemCatChem, 2017, 9, 1292.

    6. [6]


      (e) Omar, M. A.; Conrad, J.; Beifuss, U. Tetrahedron 2014, 70, 3061.

    7. [7]

      (a) Ohta, Y.; Tokimizu, Y.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett., 2010, 12, 3963.
      (b) Lv, Y.; Li, Y.; Xiong, T.; Pu, W.; Zhang, H.; Sun, K.; Liu, Q.; Zhang, Q. Chem. Commun. 2013, 49, 6439.
      (c) Zhang, W.; Guo, F.; Wang, F.; Zhao, N.; Liu, L.; Li, J.; Wang, Z. Org. Biomol. Chem. 2014, 12, 5752.
      (d) Cheng, X.; Wang, H.; Xiao, F.; Deng, G.-J. Green Chem. 2016, 18, 5773.

    8. [8]

      (a) Lin, J.-P.; Zhang, F.-H.; Long, Y.-Q. Org. Lett. 2014, 16, 2822.
      (b) Xu, L.; Li, H.; Liao, Z.; Lou, K.; Xie, H.; Li, H.; Wang, W. Org. Lett. 2015, 17, 3434.
      (c) Wang, H.; Lorion, M. M.; Ackermann, L. Angew. Chem.. Int. Ed. 2016, 55, 10386.
      (d) Wang, X.; Jiao, N. Org. Lett. 2016, 18, 2150.

    9. [9]

      (a) Su, X.; Chen, C.; Wang, Y.; Chen, J.; Lou, Z.; Li, M. Chem. Commun. 2013, 49, 6752.
      (b) Tang, L.; Yang, Y.; Wen, L.; Zhang, S.; Zha, Z.; Wang, Z. Org. Chem. Front. 2015, 2, 114.
      (c) Lei, X.; Gao, M.; Tang, Y. Org. Lett. 2016, 18, 4990.
      (d) Tang, L.; Wang, P.; Fan, Y.; Yang, X.; Wan, C.; Zha, Z. ChemCatChem 2016, 8, 3565.
      (e) Ramanathan, M.; Liu, S.-T. J. Org. Chem. 2017, 82, 8290.
      (f) Zhang, L.; Li, J.; Hu, Z.; Dong, J.; Zhang, X.-M.; Xu, X. Adv. Synth. Catal. 2018, 360, 1938.
      (g) Satish, G.; Polu, A.; Kota, L.; Ilangovan, A. Org. Biomol. Chem., 2019, 17, 4774.

    10. [10]

      (a) Mousseau, J. J.; Charette, A. B. Acc. Chem. Res. 2013, 46, 412.
      (b) Rao, W.-H.; Shi, B.-F. Org. Chem. Front. 2016, 3, 1028.
      (c) Shang, R.; Ilies, L.; Nakamura, E. Chem. Rev., 2017, 117, 9086.
      (d) Wang, S.; Chen, S.-Y.; Yu, X.-Q. Chem. Commun. 2017, 53, 3165.
      (e) Hu, Y.; Zhou, B.; Wang, C. Acc. Chem. Res. 2018, 51, 816.

    11. [11]

      (a) Shi, Z.; Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3381.
      (b) Wu, W.; Jiang, H. Acc. Chem. Res. 2012, 45, 1736.
      (c) Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.; Kozlowski, M. C. Chem. Rev. 2013, 113, 6234.

    12. [12]

      (a) Sorokin, A. B. Chem. Rev. 2013, 113, 8152.
      (b) Colomban, C. Synlett 2014, 25, 2521. (a) Piera, J.; Persson, A.; Caldentey, X.; B).
      (ckvall, J.-E. J. Am. Chem. Soc. 2007, 129, 14120.
      (b) Gigant, N.; B).
      (ckvall, J.-E. Chem. Eur. J. 2013, 19, 10799.
      (c) Gigant, N.; B).
      (ckvall, J.-E. Org. Lett. 2014, 16, 1664.

    13. [13]

      (a) Taniguchi, T.; Sugiura, Y.; Zaimoku, H.; Ishibashi, H. Angew. Chem.. Int. Ed. 2010, 49, 10154.
      (b) Hirose, D.; Taniguchi, T.; Ishibashi, H. Angew. Chem.. Int. Ed. 2013, 52, 4613.
      (c) Hashimoto, T.; Hirose, D.; Taniguchi, T. Angew. Chem.. Int. Ed. 2014, 53, 2730.

    14. [14]

      Puls, F.; Knölker, H.-J. Angew. Chem.. Int. Ed. 2018, 57, 1222.  doi: 10.1002/anie.201710370

    15. [15]

      (a) Narang, U.; Yadav, K. K.; Bhattacharya, S.; Chauhan. S. M. S. ChemistrySelect 2017, 2, 7135.
      (b) Dou, Y.; Huang, X.; Wang, H.; Yang, L.; Li, H.; Yuan, B.; Yang, G. Green Chem. 2017, 19, 2491.
      (c) Jiang, T.; Chen, S.-Y.; Zhang, G.-Y.; Zeng, R.-S.; Zou, J.-P. Org. Biomol. Chem. 2014, 12, 6922.
      (d) Huang, H.; Ash, J.; Kang, J. Y. Org. Biomol. Chem. 2018, 16, 4236.

    16. [16]

      (a) Bala, M.; Verma, P. K.; Sharma, U.; Kumar, N.; Singh, B. Green Chem. 2013, 15, 1687.
      (b) Bala, M.; Verman, P. K.; Kumar, N.; Sharma, U.; Singh, B. Can. J. Chem. 2013, 91, 732.

    17. [17]

      Gregorio, G. D.; Mari, M.; Bartoccini, F.; Piersanti, G. J. Org. Chem. 2017, 82, 8769.  doi: 10.1021/acs.joc.7b01603

    18. [18]

      (a) Chen, M.; Zhang, M.; Xiong, B.; Tan, Z.; Lv, W.; Jiang, H. Org. Lett. 2014, 16, 6028.
      (b) Yao, S.; Zhou, K.; Wang, J.; Cao, H.; Yu, L.; Wu, J.; Qiu, P.; Xu, Q. Green Chem. 2017, 19, 2945.
      (c) Parua, S.; Sikari, R.; Sinha, S.; Chakraborty, G.; Mondal, R.; Paul, N. D. J. Org. Chem. 2018, 83, 11154.

    19. [19]

      Wang, X.; Wang, C.; Liu, Y.; Xiao, J. Green Chem. 2016, 18, 4605.  doi: 10.1039/C6GC01272H

    20. [20]

      (a) Wan, X.-M.; Liu, Z.-L.; Liu, W.-Q; Cao, X.-N.; Zhu, X.; Zhao, X.-M.; Song, B.; Hao, X.-Q.; Liu, G. Tetrahedron 2019, 75.
      (b) Chakraborty, G.; Sikari, R.; Das, S.; Mondal, R.; Sinha, S.; Banerjee, S.; Paul, N. D. J. Org. Chem. 2019, 84, 2626.
      (c) Das, K.; Mondal, A.; Pal, D.; Srimani, D. Org. Lett. 2019, 21, 3223.

    21. [21]

      (a) Nallagangu, M.; Sujatha, C.; Bhat, V.; Namitharan, K. Chem. Commun. 2019, 55, 8490.
      (b) Das, D.; Sinha, S.; Samanta, D.; Mondal, R.; Chakraborty, G.; Brandao, P.; Paul, N. J. Org. Chem. 2019, 84, 10160.

    22. [22]

      (a) Li, K.; Niu, J.-L.; Yang, M.-Z.; Li, Z.; Wu, L.-Y.; Hao, X.-Q.; Song, M.-P. Organometallics 2015, 34, 1170.
      (b) Yang, F.-L.; Wang, Y.-H.; Ni, Y.-F.; Gao, X.; Song, B.; Zhu, X.; Hao, X.-Q. Eur. J. Org. Chem. 2017, 3481.
      (c) Cao, X.-N.; Wan, X.-M.; Yang, F.-L.; Li, K.; Hao, X.-Q.; Shao, T.; Zhu, X.; Song, M.-P. J. Org. Chem. 2018, 83, 3657.
      (d) Zhu, Z.-H.; Li, Y.; Wang, Y.-B.; Lan, Z.-G.; Zhu, X.; Hao, X.-Q.; Song, M.-P. Organometallics 2019, 38, 2156.

    23. [23]

      (a) Schultz, M. J.; Sigman, M. S. Tetrahedron 2006, 62, 8227.
      (b) Kervinen, K.; Korpi, H.; Leskela, M.; Repo, T. J. Mol. Catal. A Chem. 2003, 203, 9.

  • 加载中
    1. [1]

      Shili WangMamitiana Roger RazanajatovoXuedong DuShunli WanXin HeQiuming PengQingrui Zhang . Recent advances on decomplexation mechanisms of heavy metal complexes in persulfate-based advanced oxidation processes. Chinese Chemical Letters, 2024, 35(6): 109140-. doi: 10.1016/j.cclet.2023.109140

    2. [2]

      Jumei ZhangZiheng ZhangGang LiHongjin QiaoHua XieLing Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278

    3. [3]

      Yuchen Wang Zhenhao Xu Kai Yan . Rational design of metal-metal hydroxide interface for efficient electrocatalytic oxidation of biomass-derived platform molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100418-100418. doi: 10.1016/j.cjsc.2024.100418

    4. [4]

      Qingbai TianBingLiang YuZhihao LiWei HongQian LiXing Xu . Versatile catalytic membranes anchored with metal-nitrogen based metal oxides for ultrafast Fenton-like oxidation. Chinese Chemical Letters, 2025, 36(6): 110322-. doi: 10.1016/j.cclet.2024.110322

    5. [5]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    6. [6]

      Hanghang ZhaoWenbo QiXin TanXing XuFengmin SongXianzhao Shao . Metal single-atom catalysts derived from silicon-based materials for advanced oxidation applications. Chinese Chemical Letters, 2025, 36(6): 110898-. doi: 10.1016/j.cclet.2025.110898

    7. [7]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    8. [8]

      Fenglin WangChengwei KuangZhicheng ZhengDan WuHao WanGen ChenNing ZhangXiaohe LiuRenzhi Ma . Noble metal clusters substitution in porous Ni substrate renders high mass-specific activities toward oxygen evolution reaction and methanol oxidation reaction. Chinese Chemical Letters, 2025, 36(6): 109989-. doi: 10.1016/j.cclet.2024.109989

    9. [9]

      Zhu ShuXin LeiYeye AiKe ShaoJianliang ShenZhegang HuangYongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585

    10. [10]

      Panpan WangHongbao FangMengmeng WangGuandong ZhangNa XuYan SuHongke LiuZhi Su . A mitochondria targeting Ir(III) complex triggers ferroptosis and autophagy for cancer therapy: A case of aggregation enhanced PDT strategy for metal complexes. Chinese Chemical Letters, 2025, 36(1): 110099-. doi: 10.1016/j.cclet.2024.110099

    11. [11]

      Bofei JIAZhihao LIUZongyuan GAOShuai ZHOUMengxiang WUQian ZHANGXiamei ZHANGShuzhong CHENXiaohan YANGYahong LI . Cu(Ⅱ) and Cu(Ⅰ) complexes based on derivatives of imidazo[1,5-a]pyridine: Synthesis, structures, in situ metal-ligand reactions, and catalytic activity. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1020-1036. doi: 10.11862/CJIC.20240317

    12. [12]

      Yu-Yao LiXiao-Hui LiZhi-Xuan AnYang ChuXiu-Li Wang . Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chinese Chemical Letters, 2025, 36(4): 109716-. doi: 10.1016/j.cclet.2024.109716

    13. [13]

      Wenjing Dai Lan Luo Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442

    14. [14]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    15. [15]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    16. [16]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    17. [17]

      Gu GongMengzhu LiNing SunTing ZhiYuhao HeJunan PanYuntao CaiLonglu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705

    18. [18]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    19. [19]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    20. [20]

      Huangjie Lu Yingzhe Du Peng Lin Jian Lin . Separation of americium from lanthanides based on oxidation state control. Chinese Journal of Structural Chemistry, 2024, 43(10): 100344-100344. doi: 10.1016/j.cjsc.2024.100344

Metrics
  • PDF Downloads(3)
  • Abstract views(999)
  • HTML views(71)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return