Phathalocyanine Metal Complexes (M=Fe, Co, and Cu) Catalyzed Aerobic Oxidation of 2-Amino-benzyl Alcohols to Access Quinazolines and Quinolines
- Corresponding author: Zhao Xuemei, zxm@zzu.edu.cn Shi Linlin, slinlinzzu@163.com
Citation:
Liu Zilin, Zhang Xiaojie, Zhang Heng, Jiang Hui, Zhao Xuemei, Shi Linlin, Zhu Xinju, Hao Xinqi, Song Maoping. Phathalocyanine Metal Complexes (M=Fe, Co, and Cu) Catalyzed Aerobic Oxidation of 2-Amino-benzyl Alcohols to Access Quinazolines and Quinolines[J]. Chinese Journal of Organic Chemistry,
;2020, 40(9): 2755-2763.
doi:
10.6023/cjoc202003068
(a) Juvale, K.; Gallus, J.; Wiese, M. Bioorg. Med. Chem. 2013, 21, 7858.
(b) Khan, I.; Ibrar, A.; Abbas, N.; Saeed, A. Eur. J. Med. Chem. 2014, 76, 193.
(c) Khan, I.; Ibrar, A.; Ahmed, W.; Saeed, A. Eur. J. Med. Chem. 2015, 90, 124.
(d) Connolly, D. J.; Cusack, D.; O'Sullivan, T. P.; Guiry, P. J. Tetrahedron 2005, 61, 10153.
(a) Yan, Y.; Zhang, Y.; Feng, C.; Zha, Z.; Wang, Z. Angew. Chem.. Int. Ed. 2012, 51, 8077.
(b) Panja, S. K.; Dwivedi, N.; Saha, S. Tetrahedron Lett. 2012, 53, 6167.
(c) Chen, Z.; Chen, J.; Liu, M.; Ding, J.; Gao, W.; Huang, X.; Wu, H. J. Org. Chem. 2013, 78, 11342.
(d) Gopalaiah, K.; Saini, A.; Devi, A. Org. Biomol. Chem. 2017, 15, 5781.
(e) Sarode, S. A.; Jadhav, V. G.; Nagarkar, J. M. Tetrahedron Lett. 2017, 58, 779.
(f) Deshmukh, D. S.; Bhanage, B. M. Synlett 2018, 29, 979.
(a) Han, B.; Yang, X.-L.; Wang, C.; Bai, Y.-W.; Pan, T.-C.; Chen, X.; Yu, W. J. Org. Chem. 2012, 77, 1136.
(b) Li, C.; An, S.; Zhu, Y.; Zhang, J.; Kang, Y.; Liu, P.; Wang, Y.; Li, J. RSC Adv., 2014, 4, 49888.
(c) Zhang, Z.; Wang, M.; Zhang, C.; Zhang, Z.; Lu, J.; Wang, F. Chem. Commun., 2015, 51, 9205.
(d) Chen, X.; Chen, T.; Ji, F.; Zhou, Y.; Yin, S.-F. Catal. Sci. Technol. 2015, 5, 2197.
(e) Tiwari, A. R.; Bhanage, B. M. Org. Biomol. Chem. 2016, 14, 10567.
(f) Yang, X.-L.; Meng, Q.-Y.; Gao, X.-W.; Lei, T.; Wu, C.-J.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Asian J. Org. Chem. 2017, 6, 449.
(g) Tiwari, A. R.; Bhanage, B. M. Asian J. Org. Chem. 2017, 6, 831.
(h) Chatterjee, T.; Kim, D. I.; Cho, E. J. J. Org. Chem. 2018, 83, 7423.
(a) Malakar, C. C.; Baskakova, A.; Conrad, J.; Beifuss, U. Chem. Eur. J., 2012, 18, 8882.
(b) Liu, X.; Fu, H.; Jiang, Y.; Zhao, Y. Angew. Chem.. Int. Ed. 2009, 48, 348.
(c) Xu, C.; Jia, F.-C.; Zhou, Z.-W.; Zheng, S.-J.; Li, H.; Wu, A.-X. J. Org. Chem. 2016, 81, 3000.
(d) Raut, A. B.; Tiwari, A. R.; Bhanage, B. M. ChemCatChem, 2017, 9, 1292.
(e) Omar, M. A.; Conrad, J.; Beifuss, U. Tetrahedron 2014, 70, 3061.
(a) Ohta, Y.; Tokimizu, Y.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett., 2010, 12, 3963.
(b) Lv, Y.; Li, Y.; Xiong, T.; Pu, W.; Zhang, H.; Sun, K.; Liu, Q.; Zhang, Q. Chem. Commun. 2013, 49, 6439.
(c) Zhang, W.; Guo, F.; Wang, F.; Zhao, N.; Liu, L.; Li, J.; Wang, Z. Org. Biomol. Chem. 2014, 12, 5752.
(d) Cheng, X.; Wang, H.; Xiao, F.; Deng, G.-J. Green Chem. 2016, 18, 5773.
(a) Lin, J.-P.; Zhang, F.-H.; Long, Y.-Q. Org. Lett. 2014, 16, 2822.
(b) Xu, L.; Li, H.; Liao, Z.; Lou, K.; Xie, H.; Li, H.; Wang, W. Org. Lett. 2015, 17, 3434.
(c) Wang, H.; Lorion, M. M.; Ackermann, L. Angew. Chem.. Int. Ed. 2016, 55, 10386.
(d) Wang, X.; Jiao, N. Org. Lett. 2016, 18, 2150.
(a) Su, X.; Chen, C.; Wang, Y.; Chen, J.; Lou, Z.; Li, M. Chem. Commun. 2013, 49, 6752.
(b) Tang, L.; Yang, Y.; Wen, L.; Zhang, S.; Zha, Z.; Wang, Z. Org. Chem. Front. 2015, 2, 114.
(c) Lei, X.; Gao, M.; Tang, Y. Org. Lett. 2016, 18, 4990.
(d) Tang, L.; Wang, P.; Fan, Y.; Yang, X.; Wan, C.; Zha, Z. ChemCatChem 2016, 8, 3565.
(e) Ramanathan, M.; Liu, S.-T. J. Org. Chem. 2017, 82, 8290.
(f) Zhang, L.; Li, J.; Hu, Z.; Dong, J.; Zhang, X.-M.; Xu, X. Adv. Synth. Catal. 2018, 360, 1938.
(g) Satish, G.; Polu, A.; Kota, L.; Ilangovan, A. Org. Biomol. Chem., 2019, 17, 4774.
(a) Mousseau, J. J.; Charette, A. B. Acc. Chem. Res. 2013, 46, 412.
(b) Rao, W.-H.; Shi, B.-F. Org. Chem. Front. 2016, 3, 1028.
(c) Shang, R.; Ilies, L.; Nakamura, E. Chem. Rev., 2017, 117, 9086.
(d) Wang, S.; Chen, S.-Y.; Yu, X.-Q. Chem. Commun. 2017, 53, 3165.
(e) Hu, Y.; Zhou, B.; Wang, C. Acc. Chem. Res. 2018, 51, 816.
(a) Shi, Z.; Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3381.
(b) Wu, W.; Jiang, H. Acc. Chem. Res. 2012, 45, 1736.
(c) Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.; Kozlowski, M. C. Chem. Rev. 2013, 113, 6234.
(a) Sorokin, A. B. Chem. Rev. 2013, 113, 8152.
(b) Colomban, C. Synlett 2014, 25, 2521. (a) Piera, J.; Persson, A.; Caldentey, X.; B).
(ckvall, J.-E. J. Am. Chem. Soc. 2007, 129, 14120.
(b) Gigant, N.; B).
(ckvall, J.-E. Chem. Eur. J. 2013, 19, 10799.
(c) Gigant, N.; B).
(ckvall, J.-E. Org. Lett. 2014, 16, 1664.
(a) Taniguchi, T.; Sugiura, Y.; Zaimoku, H.; Ishibashi, H. Angew. Chem.. Int. Ed. 2010, 49, 10154.
(b) Hirose, D.; Taniguchi, T.; Ishibashi, H. Angew. Chem.. Int. Ed. 2013, 52, 4613.
(c) Hashimoto, T.; Hirose, D.; Taniguchi, T. Angew. Chem.. Int. Ed. 2014, 53, 2730.
Puls, F.; Knölker, H.-J. Angew. Chem.. Int. Ed. 2018, 57, 1222.
doi: 10.1002/anie.201710370
(a) Narang, U.; Yadav, K. K.; Bhattacharya, S.; Chauhan. S. M. S. ChemistrySelect 2017, 2, 7135.
(b) Dou, Y.; Huang, X.; Wang, H.; Yang, L.; Li, H.; Yuan, B.; Yang, G. Green Chem. 2017, 19, 2491.
(c) Jiang, T.; Chen, S.-Y.; Zhang, G.-Y.; Zeng, R.-S.; Zou, J.-P. Org. Biomol. Chem. 2014, 12, 6922.
(d) Huang, H.; Ash, J.; Kang, J. Y. Org. Biomol. Chem. 2018, 16, 4236.
(a) Bala, M.; Verma, P. K.; Sharma, U.; Kumar, N.; Singh, B. Green Chem. 2013, 15, 1687.
(b) Bala, M.; Verman, P. K.; Kumar, N.; Sharma, U.; Singh, B. Can. J. Chem. 2013, 91, 732.
Gregorio, G. D.; Mari, M.; Bartoccini, F.; Piersanti, G. J. Org. Chem. 2017, 82, 8769.
doi: 10.1021/acs.joc.7b01603
(a) Chen, M.; Zhang, M.; Xiong, B.; Tan, Z.; Lv, W.; Jiang, H. Org. Lett. 2014, 16, 6028.
(b) Yao, S.; Zhou, K.; Wang, J.; Cao, H.; Yu, L.; Wu, J.; Qiu, P.; Xu, Q. Green Chem. 2017, 19, 2945.
(c) Parua, S.; Sikari, R.; Sinha, S.; Chakraborty, G.; Mondal, R.; Paul, N. D. J. Org. Chem. 2018, 83, 11154.
Wang, X.; Wang, C.; Liu, Y.; Xiao, J. Green Chem. 2016, 18, 4605.
doi: 10.1039/C6GC01272H
(a) Wan, X.-M.; Liu, Z.-L.; Liu, W.-Q; Cao, X.-N.; Zhu, X.; Zhao, X.-M.; Song, B.; Hao, X.-Q.; Liu, G. Tetrahedron 2019, 75.
(b) Chakraborty, G.; Sikari, R.; Das, S.; Mondal, R.; Sinha, S.; Banerjee, S.; Paul, N. D. J. Org. Chem. 2019, 84, 2626.
(c) Das, K.; Mondal, A.; Pal, D.; Srimani, D. Org. Lett. 2019, 21, 3223.
(a) Nallagangu, M.; Sujatha, C.; Bhat, V.; Namitharan, K. Chem. Commun. 2019, 55, 8490.
(b) Das, D.; Sinha, S.; Samanta, D.; Mondal, R.; Chakraborty, G.; Brandao, P.; Paul, N. J. Org. Chem. 2019, 84, 10160.
(a) Li, K.; Niu, J.-L.; Yang, M.-Z.; Li, Z.; Wu, L.-Y.; Hao, X.-Q.; Song, M.-P. Organometallics 2015, 34, 1170.
(b) Yang, F.-L.; Wang, Y.-H.; Ni, Y.-F.; Gao, X.; Song, B.; Zhu, X.; Hao, X.-Q. Eur. J. Org. Chem. 2017, 3481.
(c) Cao, X.-N.; Wan, X.-M.; Yang, F.-L.; Li, K.; Hao, X.-Q.; Shao, T.; Zhu, X.; Song, M.-P. J. Org. Chem. 2018, 83, 3657.
(d) Zhu, Z.-H.; Li, Y.; Wang, Y.-B.; Lan, Z.-G.; Zhu, X.; Hao, X.-Q.; Song, M.-P. Organometallics 2019, 38, 2156.
(a) Schultz, M. J.; Sigman, M. S. Tetrahedron 2006, 62, 8227.
(b) Kervinen, K.; Korpi, H.; Leskela, M.; Repo, T. J. Mol. Catal. A Chem. 2003, 203, 9.
Shili Wang , Mamitiana Roger Razanajatovo , Xuedong Du , Shunli Wan , Xin He , Qiuming Peng , Qingrui Zhang . Recent advances on decomplexation mechanisms of heavy metal complexes in persulfate-based advanced oxidation processes. Chinese Chemical Letters, 2024, 35(6): 109140-. doi: 10.1016/j.cclet.2023.109140
Jumei Zhang , Ziheng Zhang , Gang Li , Hongjin Qiao , Hua Xie , Ling Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278
Yuchen Wang , Zhenhao Xu , Kai Yan . Rational design of metal-metal hydroxide interface for efficient electrocatalytic oxidation of biomass-derived platform molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100418-100418. doi: 10.1016/j.cjsc.2024.100418
Kexin Yin , Jingren Yang , Yanwei Li , Qian Li , Xing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Zhu Shu , Xin Lei , Yeye Ai , Ke Shao , Jianliang Shen , Zhegang Huang , Yongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585
Panpan Wang , Hongbao Fang , Mengmeng Wang , Guandong Zhang , Na Xu , Yan Su , Hongke Liu , Zhi Su . A mitochondria targeting Ir(III) complex triggers ferroptosis and autophagy for cancer therapy: A case of aggregation enhanced PDT strategy for metal complexes. Chinese Chemical Letters, 2025, 36(1): 110099-. doi: 10.1016/j.cclet.2024.110099
Yu-Yao Li , Xiao-Hui Li , Zhi-Xuan An , Yang Chu , Xiu-Li Wang . Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chinese Chemical Letters, 2025, 36(4): 109716-. doi: 10.1016/j.cclet.2024.109716
Gang Hu , Chun Wang , Qinqin Wang , Mingyuan Zhu , Lihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Yang Yang , Jing-Li Luo , Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269
Gu Gong , Mengzhu Li , Ning Sun , Ting Zhi , Yuhao He , Junan Pan , Yuntao Cai , Longlu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705
Erzhuo Cheng , Yunyi Li , Wei Yuan , Wei Gong , Yanjun Cai , Yuan Gu , Yong Jiang , Yu Chen , Jingxi Zhang , Guangquan Mo , Bin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386
Zhipeng Wan , Hao Xu , Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298
Huangjie Lu , Yingzhe Du , Peng Lin , Jian Lin . Separation of americium from lanthanides based on oxidation state control. Chinese Journal of Structural Chemistry, 2024, 43(10): 100344-100344. doi: 10.1016/j.cjsc.2024.100344
Xian Yan , Huawei Xie , Gao Wu , Fang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279
Qinwei Lu , Jinjie Lu , Juying Lei , Xubiao Luo , Yanbo Zhou . Cyclodextrin-boosted photocatalytic oxidation for efficient bisphenol A removal. Chinese Chemical Letters, 2025, 36(3): 110017-. doi: 10.1016/j.cclet.2024.110017
Xiaoxue Li , Hongwei Zhou , Rongrong Qian , Xu Zhang , Lei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036
Zhiqiang Wang , Yajie Gao , Tianjun Wang , Wei Chen , Zefeng Ren , Xueming Yang , Chuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602
Jian Peng , Yue Jiang , Shuangyu Wu , Yanran Cheng , Jingyu Liang , Yixin Wang , Zhuo Li , Sijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903