Citation: Liang Wei, Tan Chengxia, Weng Jianquan, Liu Xinghai. Advances on Synthesis and Biological Activities of Mesoionic Compounds[J]. Chinese Journal of Organic Chemistry, ;2020, 40(9): 2702-2713. doi: 10.6023/cjoc202003064 shu

Advances on Synthesis and Biological Activities of Mesoionic Compounds

  • Corresponding author: Liu Xinghai, xhliu@zjut.edu.cn
  • Received Date: 29 March 2020
    Revised Date: 13 May 2020
    Available Online: 29 May 2020

    Fund Project: the Natural Science Foundation of Zhejiang Province LY19C140002Project supported by the Natural Science Foundation of Zhejiang Province (No. LY19C140002)

Figures(33)

  • As an important kind of heterocyclic molecules, mesoionic compounds are widely used in medicine, pesticide and other fields. Ever since they were discovered in 1935, mesoionic compounds have been extensively explored in terms of synthesis, properties and applications. Many references relating to these compounds have been published over years revealing their unique reactivity and bioactivity. An overview of mesoionic compounds from the perspectives of synthetic methods, reaction mechanisms and applications is offered. Their potentials as a dominant active structure for development of pesticides are also discussed.
  • 加载中
    1. [1]

      Earl, J. C.; Mackney, A. W. J. Chem. Soc. 1935, 899.  doi: 10.1039/jr9350000899

    2. [2]

      Huisgen, R.; Gotthardt, H.; Bayer, H, O. Angew. Chem., Int. Ed. 1964, 3, 136.  doi: 10.1002/anie.196401361

    3. [3]

      St Cyr, D. J.; Arndtsen, B. A. J. Am. Chem. Soc. 2007, 129, 12366.  doi: 10.1021/ja074330w

    4. [4]

      Wilton, D. J.; Harrison, R. F.; Willett, P.; Delaney, J.; Lawson, K.; Mullier, G. J. Chem. Inf. Model. 2006, 46, 471.  doi: 10.1021/ci050397w

    5. [5]

      Ollis, W. D.; Ramsden, C. A. Adv. Heterocycl. Chem. 1976, 19, 1.  doi: 10.1016/S0065-2725(08)60230-5

    6. [6]

      Latthe, P. R.; Shinge, P. S.; Badami, B. V.; Patil, P. B.; Holihosur, S. N. J. Chem. Sci. 2006, 118, 249.  doi: 10.1007/BF02708284

    7. [7]

      Gotthard, H.; Huisgen, R.; Schaefer, F. C. Tetrahedron Lett. 1964, 10, 487.

    8. [8]

      Zhang, W. M.; Holyoke, C. W.; Barry, J.; Leighty, R. M.; Cordova, D.; Vincent, D. R.; Briddell, T. A. Bioorg. Med. Chem. Lett. 2016, 26, 5444.  doi: 10.1016/j.bmcl.2016.10.031

    9. [9]

      Zhang, W. M. Acc. Chem. Res. 2017, 50, 2381  doi: 10.1021/acs.accounts.7b00311

    10. [10]

      Holyoke, C. W. Jr.; Cordova, D.; Zhang, W. M.; Barry, D. J.; Leighty, M. R.; Dietrich, F. R.; Rauh, J. J.; Pahutski, F. T. Jr.; Lahm, P. G.; Tong, T. M.-H.; Benner, A. E.; Andreassi, L. J.; Smith, M. R.; Vincent, R. D.; Christianson, A. L.; Teixeira, A. L.; Singh, V.; Hughes, A. K. Pest Manage. Sci. 2017, 73, 796.  doi: 10.1002/ps.4496

    11. [11]

      Coburn, R. A.; Carapellotti, R. A. J. Pharm. Sci. 1976, 65, 1505.  doi: 10.1002/jps.2600651022

    12. [12]

      White, E. H.; Egger, N. J. Am. Chem. Soc. 1984, 106, 3701.  doi: 10.1021/ja00324a067

    13. [13]

      Chandrasekhar, R.; Nanjan, M. J. Mini. Rev. Med. Chem. 2012, 12, 1359.

    14. [14]

      Jogul, J. J.; Badami, B. V. J. Serb. Chem. Soc. 2006, 71, 851.  doi: 10.2298/JSC0609851J

    15. [15]

      Kennis, L. E. J.; Bischoff, F. P.; Mertens, C. J.; Love, C. J.; Keybus, F. A. F. V.; Pieters, S.; Braeken, M.; Megens, A. A. H. P.; Leysen, J. E. Bioorg. Med. Chem. Lett. 2000, 10, 71.  doi: 10.1016/S0960-894X(99)00591-0

    16. [16]

      Holyoke Jr, C. W.; Zhang, W. M.; Pahutski, T. F. Jr.; Lahm, G. P.; Tong, M. H. T.; Cordova, D.; Leighty, R. M. 13th IUPAC International Congress of Pesticide Chemistry—Discovery and Synthesis of Crop Protection Products, American Chemical Society, Washington, DC, USA, 2015, pp. 365~378.

    17. [17]

      Moustafa, M. A.; Gineinah, M. M.; Nasr, M. N.; Bayoumi, W. A. Arch. Pharm. Med. Chem. 2004, 337, 427.  doi: 10.1002/ardp.200300847

    18. [18]

      Latthe, P. R.; Shinge, P. S.; Badami, B. V.; Patil, P. B.; Holihosur, S. N. J. Chem. Sci. 2006, 118, 249.  doi: 10.1007/BF02708284

    19. [19]

      Taj, T.; Kamble, R. R.; Gireesh, T. M.; Hunnur, R. K. J. Serb. Chem. Soc. 2011, 76, 1069.  doi: 10.2298/JSC100708085T

    20. [20]

      Patel, K. C.; Patel, H. D. E.-J. Chem. 2011, 8, 113.  doi: 10.1155/2011/705856

    21. [21]

      Hegde, J. C.; Girish, K. S.; Adhikari, A.; Kalluraya, B. Synth. Commun. 2013, 43, 301.  doi: 10.1080/00397911.2011.599102

    22. [22]

      Dubey, R.; Chaudhary, N.; Kumar, R.; Panwar, H. Orient. J. Chem. 2014, 30, 271.  doi: 10.13005/ojc/300134

    23. [23]

      Bayer, H. O.; Huisgen, R.; Knorr, R.; Schaefer, F. C. Chem. Ber. 1970, 103, 2581.  doi: 10.1002/cber.19701030830

    24. [24]

      Potts, K.; Yao, S. J. Org. Chem. 1979, 44, 977  doi: 10.1021/jo01320a020

    25. [25]

      Anderson, A. K.; Heider, A. R. Synth. Commun. 1986, 16, 357.  doi: 10.1080/00397918608076318

    26. [26]

      Kato, H.; Tani, K.; Kurumisawa, H.; Tamura, Y. Chem. Lett. 1980, 717.

    27. [27]

      Lu, Y.; Arndtsen, B. A. Angew. Chem., Int. Ed. 2008, 47, 5430  doi: 10.1002/anie.200801385

    28. [28]

      (a) Arndtsen, B. A. Chem.-Eur. J. 2009, 15, 302.
      (b) Quesenel, J. S.; Amdtsen, B. A. Pure. Appl. Chem. 2013, 85, 377.

    29. [29]

      Miao, Q.; Sun, H. L. Chin. Sci. Bull. 2015, 60, 2003 (in Chinese).

    30. [30]

      Miao, Q. M.S. Thesis, Nankai University, Tianjin, 2015 (in Chinese).

    31. [31]

      Torres, G. M.; Quesnel, J. S.; Bijou, D.; Arndtsen, B. A. J. Am. Chem. Soc. 2016, 138, 7315.  doi: 10.1021/jacs.6b02314

    32. [32]

      St Cyr, D. J.; Arndtsen, B. A. J. Am. Chem. Soc. 2007, 129, 12366.  doi: 10.1021/ja074330w

    33. [33]

      Couture, A.; Deniau, E.; Grandclaudon, P. Synthesis 1994, 953.

    34. [34]

      Morin, M. S. T.; St Cyr, D. J.; Arndtsen, B. A. Org. Lett. 2010, 12, 4916.  doi: 10.1021/ol102075y

    35. [35]

      Morin, M. S. T.; Aly, S.; Arndtsen, B. A. Chem Commun. 2013, 49, 883.  doi: 10.1039/C2CC38274A

    36. [36]

      Jeanmart, S.; Edmunds, A. F.; Lamberth, C. Bioorg. Med. Chem. 2016, 24, 317.  doi: 10.1016/j.bmc.2015.12.014

    37. [37]

      Holyoke, C. W.; Tong, M. T.; Coats, R. A. WO 099929, 2009.

    38. [38]

      Lugan, N.; Lavigne, G.; Labande, A.; Cesar, V. Organometallics 2014, 33, 5085.  doi: 10.1021/om5007819

    39. [39]

      Zhang, W. M.; Holyoke, W. C. Jr.; Pahutski, F. T. Jr.; Lahm, P. G.; Barry, D. J.; Cordova, D.; Leighty, M. R.; Singh, V.; Vincent, R. D.; Tong, T. M.-H.; Hughes, A. K.; Mc Cann, F. S.; Henry, T. Y.; Xu, M.; Briddell, A. T. Bioorg. Med. Chem. Lett. 2017, 27, 16.  doi: 10.1016/j.bmcl.2016.11.042

    40. [40]

      Lei, G. Y.; Ying, J. W.; Song, Y. Q. Mod. Agrochem. 2017, 16, 14 (in Chinese).

    41. [41]

      Zhang, W. M.; Holyoke, W. C. Jr.; Barry, J.; Cordova, D.; Leighty, M. R.; Tong, T. M.-H.; Hughes, A. K.; Lahm, P. G.; Pahutski, F. T. Jr.; Xu, M.; Briddell, A. T.; Mc Cann, F. T.; Henry, T. Y.; Chen, Y. Z. Bioorg. Med. Chem. Lett. 2017, 27, 911.  doi: 10.1016/j.bmcl.2017.01.002

    42. [42]

    43. [43]

      Hasegawa, S.; Kamo, T.; Kagohara, Y.; Miyake, T.; Kobayashi, T.; Matsuda, R.; Asano, S.; Kudamatsu, A. WO 171053, 2016.

    44. [44]

      Thieme, P.; Patsch, M.; Konig, H. Liebigs Ann. Chem. 1972, 764, 94.

    45. [45]

      Zhang, Z. Y.; Zhu, C. H.; Sun, X. W. Chem. J. Chin. Univ. 2000, 21, 386 (in Chinese).

    46. [46]

      Abbott, P. A.; Bonnert, R. V.; Caffrey, M. V.; Cage, P. A.; Cooke, A. J.; Furber, M.; Hill, S.; Withnall, J. Tetrahedron 2002, 58, 3185.  doi: 10.1016/S0040-4020(02)00269-7

    47. [47]

      Avalos, M.; Babiano, R.; Cabanillas, A.; Cintas, P.; Higes, F. J.; Jiménez, J. L.; Palacios, J. C. J. Org. Chem. 1996, 61, 3738.  doi: 10.1021/jo952275g

    48. [48]

      Arévalo, M. J.; Avalos, M.; Babiano, R.; Cintas, P.; Hursthouse, M. B.; Jiménez, J. L.; Light, M. E.; Palacios, J. C. Tetrahedron: Asymmetry 2002, 13, 223.  doi: 10.1016/S0957-4166(02)00104-0

    49. [49]

      Avalos, M.; Babiano, R.; Cintas, P; Jimexnez, J. L.; Palacios, J. C. Acc. Chem. Res. 2005, 38, 460.  doi: 10.1021/ar040212r

    50. [50]

      Chernyshev, V. N.; Astakhov, A. V.; Starikova, Z. A. Tetrahedron 2010, 66, 3301.  doi: 10.1016/j.tet.2010.03.009

    51. [51]

      Hassan, A. A.; Bräse. S.; Tawfeek, H. N.; Mohamed, N. K.; Nieger, M.; El-Shaieb, K. M. A. Tetrahedron Lett. 2014, 55, 2385.  doi: 10.1016/j.tetlet.2014.02.107

    52. [52]

      Zhao, S. X.; Yu, R. C.; Chen, W. Z.; Liu, M. C.; Wu, H. Y. Org. Lett. 2015, 17, 2828.  doi: 10.1021/acs.orglett.5b01247

    53. [53]

      Erguven, H.; Leitch, D. C.; Keyzer, E. N.; Arndtsen, B. A. Angew. Chem., Int. Ed. 2017, 56, 6078.  doi: 10.1002/anie.201609726

    54. [54]

      Samarskaya, A. S.; Cherepanov, I. A.; Godovikov, I. A.; Dmitrienko, A. O.; Moiseev, S. K.; Kalinin, V. N.; Hey-Hawkins, E. Tetrahedron 2018, 74, 2693.  doi: 10.1016/j.tet.2018.04.015

    55. [55]

      Eilertsen, M.; Allin, S. M.; Pearson, R. J. Bioorg. Med. Chem. Lett. 2018, 28, 1106.  doi: 10.1016/j.bmcl.2018.01.059

    56. [56]

    57. [57]

      Kuzmina, O. M.; Weisel, M.; Narine, A. A. Eur. J. Org. Chem. 2019, 5527.

    58. [58]

      Benaissa, A.; Pallova, L.; Morantin, M. E.; Lafitte, T.; Huynh, M.; Barthes, C.; Vendier, L.; Lugan, N.; Bastin, S.; César, V. Chem.-Eur. J. 2019, 3, 242.

    59. [59]

      Hansmann, M. M.; Antoni, P. W.; Pescht, H. Angew. Chem., Int. Ed. 2020, 59, 2.  doi: 10.1002/anie.201914768

    60. [60]

      Narine, A.; Dickhaut, J.; Kaiser, F.; Bandur, N. G.; Koerber, K.; Von Deyn, W.; Derksen, S.; Paulini, R.; Culbertson, D. L. WO 144228, 2013.

    61. [61]

      Dickhaut, J.; Narine, A.; Derksen, S.; Bandur, N. G.; Von Deyn, W.; Koller, R.; Wach, J. Y.; Langewald, J.; Rankl, N. B. WO 202582, 2014.

    62. [62]

      Narine, A.; Bandur, N. G.; Dickhaut, J.; Derksen, S.; Koller, R.; Von Deyn, W.; Wach, J.-Y.; Culbertson, D. L. WO 167084, 2014.

    63. [63]

      Narine, A.; Dickhaut, J.; Kaiser, F.; Bandur, N. G.; Koerber, K.; Von Deyn, W. WO 033244, 2014.

    64. [64]

      Dickhaut, J.; Narine, A.; Von Deyn, W.; Koller, R.; Wach, J.-Y.; Vyas, D.; Adisechan, A.; Shinde, H. WO 055431, 2016.

    65. [65]

      Markus, H.; Daniela, P.; Kerstin, I.; Ulrich, G.; Silvia, C. G.; Marc, M.; Sascha, E.; Andreas, T. WO 093214, 2018.

    66. [66]

      Heil, M.; Hoffmeister, L.; Webber, M.; Ilg, K.; Goergens, U.; Turberg, A. WO 192872, 2018.

    67. [67]

      Holyoke, W. C. Jr. WO 208595, 2018.

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    4. [4]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    5. [5]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    6. [6]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    7. [7]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    8. [8]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    9. [9]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    10. [10]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    11. [11]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    12. [12]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    13. [13]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    14. [14]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    15. [15]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    16. [16]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    17. [17]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    18. [18]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    19. [19]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    20. [20]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

Metrics
  • PDF Downloads(31)
  • Abstract views(2537)
  • HTML views(842)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return