Citation: Liu Jiahao, Han Jingjie, Yi Xiaoyi, Liu Chao, He Piao. Research Progress of Homogeneous Catalyst for the Dehydrogenation of Formic Acid[J]. Chinese Journal of Organic Chemistry, ;2020, 40(9): 2658-2668. doi: 10.6023/cjoc202003060 shu

Research Progress of Homogeneous Catalyst for the Dehydrogenation of Formic Acid

  • Corresponding author: He Piao, piaohe@csu.edu.cn
  • Received Date: 27 March 2020
    Revised Date: 9 May 2020
    Available Online: 11 June 2020

    Fund Project: the Research Start-Up Fund of Central South University 201810Project supported by the Research Start-Up Fund of Central South University (No. 201810)

Figures(14)

  • Formic acid (HCOOH) has great potential as liquid hydrogen storage materials and for clean hydrogen production. In the past decade, researchers have not only made significant progress in developing more active, stable, and selective catalysts, but also proposed the concept of the reversible system of hydrogen release and storage. This review covers the latest progress of homogeneous catalysts in this field, focusing on the noble metal based catalysts represented by ruthenium, rhodium, and iridium, as well as the non-noble metal based catalysts such as iron, cobalt, nickel, copper, aluminum and so on. It is hoped that this review will provide some insights and idea for developing better catalytic systems for the dehydrogenation of formic acid in the future.
  • 加载中
    1. [1]

      Sordakis, K.; Tang, C.; Vogt, L. K.; Junge, H.; Dyson, P. J.; Beller, M.; Laurenczy, G. Chem. Rev. 2018, 118, 372.  doi: 10.1021/acs.chemrev.7b00182

    2. [2]

      Coffey, R. S. Chem. Commun. 1967, 923.

    3. [3]

      Gao, Y.; Kuncheria, J.; Puddephatt, R. J.; Yap, G. P. A. Chem. Commun. 1998, 2365.

    4. [4]

      Gao, Y.; Kuncheria, J. K.; Jenkins, H. A.; Puddephatt, R. J.; Yap, G. P. A. J. Chem. Soc., Dalton Trans. 2000, 3212.

    5. [5]

      Hannedouche, J. M.; Clarkson, G. J.; Wills, M. J. Am. Chem. Soc. 2004, 126, 986.  doi: 10.1021/ja0392768

    6. [6]

      Hayes, A. M.; Morris, D. J.; Clarkson, G. J.; Wills, M. J. Am. Chem. Soc. 2005, 127, 7318.  doi: 10.1021/ja051486s

    7. [7]

      Matharu, D. S.; Morris, D. J.; Clarkson, G. J.; Wills, M. Chem. Commun. 2006, 3232.

    8. [8]

      Morris, D. J.; Clarkson, G. J.; Wills, M. Organometallics 2009, 28, 4133.  doi: 10.1021/om900099u

    9. [9]

      Majewski, A.; Morris, D. J.; Kendall, K.; Wills, M. ChemSusChem 2010, 3, 431.  doi: 10.1002/cssc.201000017

    10. [10]

      Fellay, C.; Paul; nbsp; Dyson, J.; Laurenczy, G. Angew. Chem., Int. Ed. 2008, 120, 4030.  doi: 10.1002/ange.200800320

    11. [11]

      Fellay, C.; Yan, N.; Dyson, P. J.; Laurenczy, G. Chem.-Eur. J. 2009, 15, 3752.  doi: 10.1002/chem.200801824

    12. [12]

      Thevenon, A.; Frost-Pennington, E.; Weijia, G.; Dalebrook, A. F.; Laurenczy, G. ChemCatChem 2014, 6, 3146.  doi: 10.1002/cctc.201402410

    13. [13]

      Gan, W.; Fellay, C.; Dyson, P. J.; Laurenczy, G. J. Coord. Chem. 2010, 63, 2685.  doi: 10.1080/00958972.2010.492470

    14. [14]

      Gan, W.; Snelders, D. J. M.; Dyson, P. J.; Laurenczy, G. B. ChemCatChem 2013, 5, 1126.  doi: 10.1002/cctc.201200782

    15. [15]

      Loges, B.; Boddien, A.; Junge, H.; Beller, M. Angew. Chem., Int. Ed. 2008, 47, 3962.  doi: 10.1002/anie.200705972

    16. [16]

      Boddien, A.; Loges, B. R.; Junge, H.; Beller, M. ChemSusChem 2008, 1, 751.  doi: 10.1002/cssc.200800093

    17. [17]

      Boddien, A.; Loges, B.; Junge, H.; Gärtner, F.; Beller, M. Adv. Synth. Catal. 2009, 351, 2517.  doi: 10.1002/adsc.200900431

    18. [18]

      Boddien, A.; Loges, B.; Junge, H.; Noyes, J. R.; Beller, M. Tetrahedron Lett. 2009, 50, 1603.  doi: 10.1016/j.tetlet.2009.01.101

    19. [19]

      Loges, B.; Boddien, A.; Junge, H.; Noyes, J. R.; Baumann, W.; Beller, M. Chem. Commun. 2009, 4185.

    20. [20]

      Boddien, A.; Federsel, C.; Sponholz, P.; Mellmann, D.; Jackstell, R.; Junge, H.; Laurenczy, G.; Beller, M. Energy Environ. Sci. 2012, 5, 8907.  doi: 10.1039/c2ee22043a

    21. [21]

      Sordakis, K.; Beller, M.; Laurenczy, G. ChemCatChem 2014, 6, 96.  doi: 10.1002/cctc.201300740

    22. [22]

      Sponholz, P.; Mellmann, D. r.; Junge, H.; Beller, M. ChemSusChem 2013, 6, 1172.  doi: 10.1002/cssc.201300186

    23. [23]

      Geldbach, T. J.; Dyson, P. J. J. Am. Chem. Soc. 2004, 126, 8114.  doi: 10.1021/ja048886k

    24. [24]

      Kawasaki, I.; Tsunoda, K.; Tsuji, T.; Yamaguchi, T.; Shibuta, H.; Uchida, N.; Yamashita, M.; Ohta, S. Chem. Commun. 2005, 2134.

    25. [25]

      Li, X.; Ma, X.; Shi, F.; Deng, Y. ChemSusChem 2010, 3, 71.  doi: 10.1002/cssc.200900218

    26. [26]

      Scholten, J. D.; Prechtl, M. H. G.; Dupont, P. Â. J. ChemCatChem 2010, 2, 1265.  doi: 10.1002/cctc.201000119

    27. [27]

      Berger, M. E. M.; Assenbaum, D.; Taccardi, N.; Spiecker, E.; Wasserscheid, P. Green Chem. 2011, 13, 1411.  doi: 10.1039/c0gc00829j

    28. [28]

      Schuster, O.; Yang, L.; Raubenheimer, H. G.; Albrecht, M. Chem. Rev. 2009, 109, 3445.  doi: 10.1021/cr8005087

    29. [29]

      Czaun, M.; Goeppert, D. A.; May, R.; Haiges, D. R.; Prakash, P. D. G. K. S.; Olah, P. D. G. A. ChemSusChem 2011, 4, 1241.  doi: 10.1002/cssc.201000446

    30. [30]

      Czaun, M.; Goeppert, A.; Kothandaraman, J.; May, R. B.; Olah, G. A. ACS Catal. 2013, 4, 311.

    31. [31]

      Kothandaraman, J.; Czaun, M.; Goeppert, A.; Haiges, R.; Jones, J.-P.; May, R. B.; Prakash, G. K. S.; Olah, G. A. ChemSusChem 2015, 8, 1442.  doi: 10.1002/cssc.201403458

    32. [32]

      Zell, T.; Butschke, B.; Ben-David, Y.; Milstein, D. Chem.-Eur. J. 2013, 19, 8068.  doi: 10.1002/chem.201301383

    33. [33]

      Vogt, M.; Nerush, A.; Diskin-Posner, Y.; Ben-David, Y.; Milstein, D. Chem. Sci. 2014, 5, 2043.  doi: 10.1039/C4SC00130C

    34. [34]

      Filonenko, G. A.; van Putten, R.; Schulpen, E. N.; Hensen, E. J. M.; Pidko, E. A. ChemCatChem 2014, 6, 1526.  doi: 10.1002/cctc.201402119

    35. [35]

      Pan, Y.; Pan, C.-L.; Zhang, Y.; Li, H.; Min, S.; Guo, X.; Zheng, B.; Chen, H.; Anders, A.; Lai, Z.; Zheng, J.; Huang, K.-W. Chem. Asian J. 2016, 11, 1357.  doi: 10.1002/asia.201600169

    36. [36]

      Fukuzumi, S.; Kobayashi, T.; Suenobu, T. J. Am. Chem. Soc. 2010, 132, 1496.  doi: 10.1021/ja910349w

    37. [37]

      Maenaka, Y.; Suenobu, T.; Fukuzumi, S. Energy Environ. Sci, 2012, 5, 7360.  doi: 10.1039/c2ee03315a

    38. [38]

      Himeda, Y. Green Chem. 2009, 11, 2018.  doi: 10.1039/b914442k

    39. [39]

      Hull, J. F.; Himeda, Y.; Wang, W.-H.; Hashiguchi, B.; Periana, R.; Szalda, D. J.; Muckerman, J. T.; Fujita, E. Nat. Chem. 2012, 4, 383.  doi: 10.1038/nchem.1295

    40. [40]

      Wang, W. H.; Xu, S.; Manaka, Y.; Suna, Y.; Kambayashi, H.; Muckerman, J. T.; Fujita, E.; Himeda, Y. ChemSusChem 2014, 7, 1976.  doi: 10.1002/cssc.201301414

    41. [41]

      Manaka, Y.; Wang, W. H.; Suna, Y.; Kambayashi, H.; Muckerman, J. T.; Fujita, E.; Himeda, Y. Catal. Sci. Technol. 2013, 4, 34.

    42. [42]

      Wang, W.-H.; Ertem, M. Z.; Xu, S.; Onishi, N.; Manaka, Y.; Suna, Y.; Kambayashi, H.; Muckerman, J. T.; Fujita, E.; Himeda, Y. ACS Catal. 2015, 5, 5496.  doi: 10.1021/acscatal.5b01090

    43. [43]

      Onishi, N.; Ertem, M. Z.; Xu, S.; Tsurusaki, A.; Manaka, Y.; Muckerman, J. T.; Fujita, E.; Himeda, Y. Catal. Sci. Technol. 2016, 6.

    44. [44]

      Iguchi, M.; Himeda, Y.; Manaka, Y.; Kawanami, H. ChemSusChem 2016, 9, 2749.  doi: 10.1002/cssc.201600697

    45. [45]

      Guan, C.; Zhang, D.-D.; Pan, Y.; Iguchi, M.; Ajitha, M. J.; Hu, J.; Li, H.; Yao, C.; Huang, M.-H.; Min, S.; Zheng, J.; Himeda, Y.; Kawanami, H.; Huang, K.-W. Inorg. Chem. 2017, 56, 438.  doi: 10.1021/acs.inorgchem.6b02334

    46. [46]

      Iguchi, M.; Himeda, Y.; Manaka, Y.; Matsuoka, K.; Kawanami, H. ChemCatChem 2016, 8, 886.  doi: 10.1002/cctc.201501296

    47. [47]

      Barnard, J. H.; Wang, C.; Berry, N. G.; Xiao, J. Chem. Sci. 2013, 4, 1234.  doi: 10.1039/c2sc21923a

    48. [48]

      Tanaka, R.; Yamashita, M.; Chung, L. W.; Morokuma, K.; Nozaki, K. Organometallics 2011, 30, 6742.  doi: 10.1021/om2010172

    49. [49]

      Fink, C.; Laurenczy, G. Dalton. Trans. 2017, 46, 1670.  doi: 10.1039/C6DT04638J

    50. [50]

      Onishi, N.; Kanega, R.; Fujita, E.; Himeda, Y. Adv. Synth. Catal. 2019, 361, 289.  doi: 10.1002/adsc.201801323

    51. [51]

      Lu, S.-M.; Wang, Z.; Wang, J.; Li, J.; Li, C. Green Chem. 2018, 20, 1835.  doi: 10.1039/C8GC00495A

    52. [52]

      Fukuzumi, S.; Kobayashi, T.; Suenobu, T. ChemSusChem 2008, 1, 827.  doi: 10.1002/cssc.200800147

    53. [53]

      Wang, Z.; Lu, S.-M.; Wu, J.; Li, C.; Xiao, J. Eur. J. Inorg. Chem. 2016, 2016, 490.  doi: 10.1002/ejic.201501061

    54. [54]

      Jongbloed, L.; Bruin, B. D.; Reek, J. N. H.; Lutz, M.; Vlugt, J. I. V. D. Catal. Sci. Technol. 2015, 6, 1320.

    55. [55]

      Jantke, D.; Pardatscher, L.; Drees, M.; Cokoja, M.; Herrmann, W. A.; Kühn, F. E. ChemSusChem 2016, 9, 2849.  doi: 10.1002/cssc.201600861

    56. [56]

      Boddien, A.; Loges, B.; Gärtner, F.; Torborg, C.; Fumino, K.; Junge, H.; Ludwig, R.; Beller, M. J. Am. Chem. Soc. 2010, 132, 8924.  doi: 10.1021/ja100925n

    57. [57]

      Boddien, A.; Gärtner, F.; Jackstell, R.; Junge, H.; Spannenberg, A.; Baumann, W.; Ludwig, R.; Beller, M. Angew. Chem., Int. Ed. 2010, 49, 8993.  doi: 10.1002/anie.201004621

    58. [58]

      Boddien, A.; Mellmann, D.; Gärtner, F.; Jackstell, R.; Junge, H.; Dyson, P. J.; Laurenczy, G.; Ludwig, R.; Beller, M. Science 2011, 333, 1733.  doi: 10.1126/science.1206613

    59. [59]

      Mellmann, D. R.; Barsch, E.; Bauer, M.; Grabow, K.; Boddien, A.; Kammer, A.; Sponholz, P.; Bentrup, U.; Jackstell, R.; Junge, H. Chem.-Eur. J. 2014, 20, 13589.  doi: 10.1002/chem.201403602

    60. [60]

      Montandon-Clerc, M.; Dalebrook, A. F.; Laurenczy, G. J. Catal. 2016, 343, 62.  doi: 10.1016/j.jcat.2015.11.012

    61. [61]

      Bielinski, E. A.; Lagaditis, P. O.; Zhang, Y.; Mercado, B. Q.; Würtele, C.; Bernskoetter, W. H.; Hazari, N.; Schneider, S. J. Am. Chem. Soc. 2014, 136, 10234.  doi: 10.1021/ja505241x

    62. [62]

      Bertini, F.; Mellone, I.; Ienco, A.; Peruzzini, M.; Gonsalvi, L. ACS Catal. 2015, 5, 1254.  doi: 10.1021/cs501998t

    63. [63]

      Mellone, I.; Gorgas, N.; Bertini, F.; Peruzzini, M.; Kirchner, K.; Gonsalvi, L. Organometallics 2016, 35, 3344.  doi: 10.1021/acs.organomet.6b00551

    64. [64]

      Myers, T. W.; Berben, L. A. Chem. Sci. 2014, 5, 2771.  doi: 10.1039/C4SC01035C

    65. [65]

      Enthaler, S.; Brück, A.; Kammer, A.; Junge, H.; Gülak, S. ChemCatChem 2014, 7, 65.

    66. [66]

      Scotti, N.; Psaro, R.; Ravasio, N.; Zaccheria, F. RSC Adv. 2014, 4, 61514.  doi: 10.1039/C4RA11031E

    67. [67]

      Neary, M. C.; Parkin, G. Chem. Sci. 2015, 6, 1859.  doi: 10.1039/C4SC03128H

    68. [68]

      Neary, M. C.; Parkin, G. Dalton. Trans. 2016, 45, 14645.  doi: 10.1039/C6DT01499B

  • 加载中
    1. [1]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    2. [2]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    3. [3]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    4. [4]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    5. [5]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    6. [6]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    7. [7]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    8. [8]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    9. [9]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    10. [10]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    14. [14]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    15. [15]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    16. [16]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    17. [17]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    18. [18]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    19. [19]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    20. [20]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

Metrics
  • PDF Downloads(97)
  • Abstract views(3724)
  • HTML views(1503)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return