Research Progress of Homogeneous Catalyst for the Dehydrogenation of Formic Acid
- Corresponding author: He Piao, piaohe@csu.edu.cn
Citation:
Liu Jiahao, Han Jingjie, Yi Xiaoyi, Liu Chao, He Piao. Research Progress of Homogeneous Catalyst for the Dehydrogenation of Formic Acid[J]. Chinese Journal of Organic Chemistry,
;2020, 40(9): 2658-2668.
doi:
10.6023/cjoc202003060
Sordakis, K.; Tang, C.; Vogt, L. K.; Junge, H.; Dyson, P. J.; Beller, M.; Laurenczy, G. Chem. Rev. 2018, 118, 372.
doi: 10.1021/acs.chemrev.7b00182
Coffey, R. S. Chem. Commun. 1967, 923.
Gao, Y.; Kuncheria, J.; Puddephatt, R. J.; Yap, G. P. A. Chem. Commun. 1998, 2365.
Gao, Y.; Kuncheria, J. K.; Jenkins, H. A.; Puddephatt, R. J.; Yap, G. P. A. J. Chem. Soc., Dalton Trans. 2000, 3212.
Hannedouche, J. M.; Clarkson, G. J.; Wills, M. J. Am. Chem. Soc. 2004, 126, 986.
doi: 10.1021/ja0392768
Hayes, A. M.; Morris, D. J.; Clarkson, G. J.; Wills, M. J. Am. Chem. Soc. 2005, 127, 7318.
doi: 10.1021/ja051486s
Matharu, D. S.; Morris, D. J.; Clarkson, G. J.; Wills, M. Chem. Commun. 2006, 3232.
Morris, D. J.; Clarkson, G. J.; Wills, M. Organometallics 2009, 28, 4133.
doi: 10.1021/om900099u
Majewski, A.; Morris, D. J.; Kendall, K.; Wills, M. ChemSusChem 2010, 3, 431.
doi: 10.1002/cssc.201000017
Fellay, C.; Paul; nbsp; Dyson, J.; Laurenczy, G. Angew. Chem., Int. Ed. 2008, 120, 4030.
doi: 10.1002/ange.200800320
Fellay, C.; Yan, N.; Dyson, P. J.; Laurenczy, G. Chem.-Eur. J. 2009, 15, 3752.
doi: 10.1002/chem.200801824
Thevenon, A.; Frost-Pennington, E.; Weijia, G.; Dalebrook, A. F.; Laurenczy, G. ChemCatChem 2014, 6, 3146.
doi: 10.1002/cctc.201402410
Gan, W.; Fellay, C.; Dyson, P. J.; Laurenczy, G. J. Coord. Chem. 2010, 63, 2685.
doi: 10.1080/00958972.2010.492470
Gan, W.; Snelders, D. J. M.; Dyson, P. J.; Laurenczy, G. B. ChemCatChem 2013, 5, 1126.
doi: 10.1002/cctc.201200782
Loges, B.; Boddien, A.; Junge, H.; Beller, M. Angew. Chem., Int. Ed. 2008, 47, 3962.
doi: 10.1002/anie.200705972
Boddien, A.; Loges, B. R.; Junge, H.; Beller, M. ChemSusChem 2008, 1, 751.
doi: 10.1002/cssc.200800093
Boddien, A.; Loges, B.; Junge, H.; Gärtner, F.; Beller, M. Adv. Synth. Catal. 2009, 351, 2517.
doi: 10.1002/adsc.200900431
Boddien, A.; Loges, B.; Junge, H.; Noyes, J. R.; Beller, M. Tetrahedron Lett. 2009, 50, 1603.
doi: 10.1016/j.tetlet.2009.01.101
Loges, B.; Boddien, A.; Junge, H.; Noyes, J. R.; Baumann, W.; Beller, M. Chem. Commun. 2009, 4185.
Boddien, A.; Federsel, C.; Sponholz, P.; Mellmann, D.; Jackstell, R.; Junge, H.; Laurenczy, G.; Beller, M. Energy Environ. Sci. 2012, 5, 8907.
doi: 10.1039/c2ee22043a
Sordakis, K.; Beller, M.; Laurenczy, G. ChemCatChem 2014, 6, 96.
doi: 10.1002/cctc.201300740
Sponholz, P.; Mellmann, D. r.; Junge, H.; Beller, M. ChemSusChem 2013, 6, 1172.
doi: 10.1002/cssc.201300186
Geldbach, T. J.; Dyson, P. J. J. Am. Chem. Soc. 2004, 126, 8114.
doi: 10.1021/ja048886k
Kawasaki, I.; Tsunoda, K.; Tsuji, T.; Yamaguchi, T.; Shibuta, H.; Uchida, N.; Yamashita, M.; Ohta, S. Chem. Commun. 2005, 2134.
Li, X.; Ma, X.; Shi, F.; Deng, Y. ChemSusChem 2010, 3, 71.
doi: 10.1002/cssc.200900218
Scholten, J. D.; Prechtl, M. H. G.; Dupont, P. Â. J. ChemCatChem 2010, 2, 1265.
doi: 10.1002/cctc.201000119
Berger, M. E. M.; Assenbaum, D.; Taccardi, N.; Spiecker, E.; Wasserscheid, P. Green Chem. 2011, 13, 1411.
doi: 10.1039/c0gc00829j
Schuster, O.; Yang, L.; Raubenheimer, H. G.; Albrecht, M. Chem. Rev. 2009, 109, 3445.
doi: 10.1021/cr8005087
Czaun, M.; Goeppert, D. A.; May, R.; Haiges, D. R.; Prakash, P. D. G. K. S.; Olah, P. D. G. A. ChemSusChem 2011, 4, 1241.
doi: 10.1002/cssc.201000446
Czaun, M.; Goeppert, A.; Kothandaraman, J.; May, R. B.; Olah, G. A. ACS Catal. 2013, 4, 311.
Kothandaraman, J.; Czaun, M.; Goeppert, A.; Haiges, R.; Jones, J.-P.; May, R. B.; Prakash, G. K. S.; Olah, G. A. ChemSusChem 2015, 8, 1442.
doi: 10.1002/cssc.201403458
Zell, T.; Butschke, B.; Ben-David, Y.; Milstein, D. Chem.-Eur. J. 2013, 19, 8068.
doi: 10.1002/chem.201301383
Vogt, M.; Nerush, A.; Diskin-Posner, Y.; Ben-David, Y.; Milstein, D. Chem. Sci. 2014, 5, 2043.
doi: 10.1039/C4SC00130C
Filonenko, G. A.; van Putten, R.; Schulpen, E. N.; Hensen, E. J. M.; Pidko, E. A. ChemCatChem 2014, 6, 1526.
doi: 10.1002/cctc.201402119
Pan, Y.; Pan, C.-L.; Zhang, Y.; Li, H.; Min, S.; Guo, X.; Zheng, B.; Chen, H.; Anders, A.; Lai, Z.; Zheng, J.; Huang, K.-W. Chem. Asian J. 2016, 11, 1357.
doi: 10.1002/asia.201600169
Fukuzumi, S.; Kobayashi, T.; Suenobu, T. J. Am. Chem. Soc. 2010, 132, 1496.
doi: 10.1021/ja910349w
Maenaka, Y.; Suenobu, T.; Fukuzumi, S. Energy Environ. Sci, 2012, 5, 7360.
doi: 10.1039/c2ee03315a
Himeda, Y. Green Chem. 2009, 11, 2018.
doi: 10.1039/b914442k
Hull, J. F.; Himeda, Y.; Wang, W.-H.; Hashiguchi, B.; Periana, R.; Szalda, D. J.; Muckerman, J. T.; Fujita, E. Nat. Chem. 2012, 4, 383.
doi: 10.1038/nchem.1295
Wang, W. H.; Xu, S.; Manaka, Y.; Suna, Y.; Kambayashi, H.; Muckerman, J. T.; Fujita, E.; Himeda, Y. ChemSusChem 2014, 7, 1976.
doi: 10.1002/cssc.201301414
Manaka, Y.; Wang, W. H.; Suna, Y.; Kambayashi, H.; Muckerman, J. T.; Fujita, E.; Himeda, Y. Catal. Sci. Technol. 2013, 4, 34.
Wang, W.-H.; Ertem, M. Z.; Xu, S.; Onishi, N.; Manaka, Y.; Suna, Y.; Kambayashi, H.; Muckerman, J. T.; Fujita, E.; Himeda, Y. ACS Catal. 2015, 5, 5496.
doi: 10.1021/acscatal.5b01090
Onishi, N.; Ertem, M. Z.; Xu, S.; Tsurusaki, A.; Manaka, Y.; Muckerman, J. T.; Fujita, E.; Himeda, Y. Catal. Sci. Technol. 2016, 6.
Iguchi, M.; Himeda, Y.; Manaka, Y.; Kawanami, H. ChemSusChem 2016, 9, 2749.
doi: 10.1002/cssc.201600697
Guan, C.; Zhang, D.-D.; Pan, Y.; Iguchi, M.; Ajitha, M. J.; Hu, J.; Li, H.; Yao, C.; Huang, M.-H.; Min, S.; Zheng, J.; Himeda, Y.; Kawanami, H.; Huang, K.-W. Inorg. Chem. 2017, 56, 438.
doi: 10.1021/acs.inorgchem.6b02334
Iguchi, M.; Himeda, Y.; Manaka, Y.; Matsuoka, K.; Kawanami, H. ChemCatChem 2016, 8, 886.
doi: 10.1002/cctc.201501296
Barnard, J. H.; Wang, C.; Berry, N. G.; Xiao, J. Chem. Sci. 2013, 4, 1234.
doi: 10.1039/c2sc21923a
Tanaka, R.; Yamashita, M.; Chung, L. W.; Morokuma, K.; Nozaki, K. Organometallics 2011, 30, 6742.
doi: 10.1021/om2010172
Fink, C.; Laurenczy, G. Dalton. Trans. 2017, 46, 1670.
doi: 10.1039/C6DT04638J
Onishi, N.; Kanega, R.; Fujita, E.; Himeda, Y. Adv. Synth. Catal. 2019, 361, 289.
doi: 10.1002/adsc.201801323
Lu, S.-M.; Wang, Z.; Wang, J.; Li, J.; Li, C. Green Chem. 2018, 20, 1835.
doi: 10.1039/C8GC00495A
Fukuzumi, S.; Kobayashi, T.; Suenobu, T. ChemSusChem 2008, 1, 827.
doi: 10.1002/cssc.200800147
Wang, Z.; Lu, S.-M.; Wu, J.; Li, C.; Xiao, J. Eur. J. Inorg. Chem. 2016, 2016, 490.
doi: 10.1002/ejic.201501061
Jongbloed, L.; Bruin, B. D.; Reek, J. N. H.; Lutz, M.; Vlugt, J. I. V. D. Catal. Sci. Technol. 2015, 6, 1320.
Jantke, D.; Pardatscher, L.; Drees, M.; Cokoja, M.; Herrmann, W. A.; Kühn, F. E. ChemSusChem 2016, 9, 2849.
doi: 10.1002/cssc.201600861
Boddien, A.; Loges, B.; Gärtner, F.; Torborg, C.; Fumino, K.; Junge, H.; Ludwig, R.; Beller, M. J. Am. Chem. Soc. 2010, 132, 8924.
doi: 10.1021/ja100925n
Boddien, A.; Gärtner, F.; Jackstell, R.; Junge, H.; Spannenberg, A.; Baumann, W.; Ludwig, R.; Beller, M. Angew. Chem., Int. Ed. 2010, 49, 8993.
doi: 10.1002/anie.201004621
Boddien, A.; Mellmann, D.; Gärtner, F.; Jackstell, R.; Junge, H.; Dyson, P. J.; Laurenczy, G.; Ludwig, R.; Beller, M. Science 2011, 333, 1733.
doi: 10.1126/science.1206613
Mellmann, D. R.; Barsch, E.; Bauer, M.; Grabow, K.; Boddien, A.; Kammer, A.; Sponholz, P.; Bentrup, U.; Jackstell, R.; Junge, H. Chem.-Eur. J. 2014, 20, 13589.
doi: 10.1002/chem.201403602
Montandon-Clerc, M.; Dalebrook, A. F.; Laurenczy, G. J. Catal. 2016, 343, 62.
doi: 10.1016/j.jcat.2015.11.012
Bielinski, E. A.; Lagaditis, P. O.; Zhang, Y.; Mercado, B. Q.; Würtele, C.; Bernskoetter, W. H.; Hazari, N.; Schneider, S. J. Am. Chem. Soc. 2014, 136, 10234.
doi: 10.1021/ja505241x
Bertini, F.; Mellone, I.; Ienco, A.; Peruzzini, M.; Gonsalvi, L. ACS Catal. 2015, 5, 1254.
doi: 10.1021/cs501998t
Mellone, I.; Gorgas, N.; Bertini, F.; Peruzzini, M.; Kirchner, K.; Gonsalvi, L. Organometallics 2016, 35, 3344.
doi: 10.1021/acs.organomet.6b00551
Myers, T. W.; Berben, L. A. Chem. Sci. 2014, 5, 2771.
doi: 10.1039/C4SC01035C
Enthaler, S.; Brück, A.; Kammer, A.; Junge, H.; Gülak, S. ChemCatChem 2014, 7, 65.
Scotti, N.; Psaro, R.; Ravasio, N.; Zaccheria, F. RSC Adv. 2014, 4, 61514.
doi: 10.1039/C4RA11031E
Neary, M. C.; Parkin, G. Chem. Sci. 2015, 6, 1859.
doi: 10.1039/C4SC03128H
Neary, M. C.; Parkin, G. Dalton. Trans. 2016, 45, 14645.
doi: 10.1039/C6DT01499B
Shiyi WANG , Chaolong CHEN , Xiangjian KONG , Lansun ZHENG , Lasheng LONG . Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046