Citation: Liu Yingjie, Meng Jianping, Li Chen, Lin Liqing, Xu Ying. Progress in the Synthesis of Isoxazoline Derivatives by Cycloylation of Allyl Oxime[J]. Chinese Journal of Organic Chemistry, ;2020, 40(9): 2742-2754. doi: 10.6023/cjoc202003056 shu

Progress in the Synthesis of Isoxazoline Derivatives by Cycloylation of Allyl Oxime

  • Corresponding author: Liu Yingjie, liuyj691@nenu.edu.cn Xu Ying, 894132290@qq.com
  • Received Date: 24 March 2020
    Revised Date: 3 May 2020
    Available Online: 27 May 2020

    Fund Project: the Natural Science Foundation of Heilongjiang Province YQ2019B004the Youth Reserve Talent Program of Harbin University of Commerce YQ2019CX36Project supported the Natural Science Foundation of Heilongjiang Province (No. YQ2019B004), the Youth Reserve Talent Program of Harbin University of Commerce (No. YQ2019CX36) and the Youth Innovation Talent Project of Harbin University of Commerce (No. 2016QN056)the Youth Innovation Talent Project of Harbin University of Commerce 2016QN056

Figures(34)

  • Isoxazoline is an important class of heterocyclic ring with a wide range of biological characteristics, which is the key structural framework of many natural products and bioactive compounds. The effective synthetic method of isoxazoline has been the subject of extensive research. In this review, the latest progress in the synthesis of various functionalized isoxazoline by allyl oxime, involving the radical oxidation/cyclization reaction in the presence of oxidants is described. These reactions are usually carried out under neutral conditions using readily available oxidants and different metals or metal-free catalysis.
  • 加载中
    1. [1]

      (a) Narasaka, K.; Kitamura, M. Eur. J. Org. Chem. 2005, 21, 4505.
      (b) Kassa, J.; Kuca, K.; Bartosova, L.; Kunesova, G. Curr. Org. Chem. 2007, 11, 267.

    2. [2]

      For recent selected examples, see: (a) Sato, Y.; Kawaguchi, S.; Nomoto, A.; Ogawa, A. Angew. Chem.. Int. Ed. 2016, 55, 9700.
      (b) Zhao, J.; Li, P.; Li, X.; Xia, C.; Li, F. Chem. Commun. 2016, 52, 3661.
      (c) Cui, H.; Liu, X.; Wei, W.; Yang, D.; He, C.; Zhang, T.; Wang, H. J. Org. Chem. 2016, 81, 2252.
      (d) Lan, X.-W.; Wang, N.-X.; Bai, C.-B.; Lan, C.-L.; Zhang, T.; Chen, S.-L.; Xing, Y. Org. Lett. 2016, 18, 5986.

    3. [3]

      Pozharskii, A. F.; Katritzky, A. R.; Soldatenkov, A. Heterocycles in Life and Society: An Introduction to Heterocyclic Chemistry. Biochemistry and Applications, John Wiley Sons, New Jersey, 2011, pp. 35~62.

    4. [4]

      Xu, Z.; Ye, T. Heterocycles in Natural Product Synthesis, Wiley-VCH, Darmstadt, 2011, pp. 459~505.

    5. [5]

      Alvarez-Builla, J.; Vaquero, J. J.; Barluenga, J. Modern Heterocyclic Chemistry, Wiley-VCH, Darmstadt, 2011, pp. 989~1045.

    6. [6]

      Li, J. J.; Hruby, V. Angew. Chem.. Int. Ed. 2017, 129, 2583.  doi: 10.1002/ange.201700015

    7. [7]

      Selected examples of biological evaluation of isoxazolines: (a) Castellano, S.; Kuck, D.; Viviano, M.; Yoo, J.; López-Vallejo, F.; Conti, P.; Tamborini, L.; Pinto, A.; Medina-Franco, J. L.; Sbardella, G. J. J. Med. Chem. 2011, 54, 7663.
      (b) Poutiainen, P. K.; Venäläinen, T. A.; Peräkylä, M.; Matilainen, J. M.; Väisänen, S.; Honkakoski, P.; Laatikainen, R.; Pulkkinen, J. T. Bioorg. Med. Chem. 2010, 18, 3437.
      (c) Namboothiri, I. N. N.; Rastogi, N. Isoxazolines from Nitro Compounds. Synthesis and Applications, Springer, Berlin, 2008, pp. 1~44.
      (d) Bode, J. W.; Carreira, E. M. Org. Lett. 2001, 3, 1587.

    8. [8]

      For selected reviews, see: (a) Rück-Braun, K.; Freysoldt, T. H. E.; Wierschem, F. Chem. Soc. Rev. 2005, 34, 507.
      (b) Kaur, K.; Kumar, V.; Sharma, A. K.; Gupta, G. K. Eur. J. Med. Chem. 2014, 77, 121.
      (c) Hu, F.; Szostak, M. Adv. Synth. Catal. 2015, 357, 2583.
      (d) Morita, T.; Yugandar, S.; Fuse, S.; Nakamura, H. Tetrahedron Lett. 2018, 59, 1159.

    9. [9]

      Zaki, Y. H.; Sayed, A. R.; Elroby, S. A. Chem. Cent. J. 2016, 10, 17.  doi: 10.1186/s13065-016-0163-2

    10. [10]

      Suresh, G.; Nadh, R. V.; Srinivasu, N.; Kaushal, K. Synth. Commun. 2016, 46, 1972.  doi: 10.1080/00397911.2016.1242748

    11. [11]

      Ning, G. H.; Zhao, W. T.; Bian, Q.; Tang, X. Y. Chin. J. Org. Chem. 2014, 34, 1800(in Chinese).

    12. [12]

      Jiang, S.; Tsikolia, M.; Bernier, U. R.; Bloomquist, J. R. Int. J. Environ. Res. Public Health 2017, 14, 154.  doi: 10.3390/ijerph14020154

    13. [13]

      Filali, I.; Bouajila, J.; Znati, M.; Garah, B.-E.; Jannet, H. B. J. Med. Chem. 2015, 30, 371.

    14. [14]

      Khazir, J.; Singh, P. P.; Reddy, D. M.; Hyder, I.; Shafi, S.; Sawant, S. D.; Chashoo, G.; Mahajan, A.; Alamc, M. S.; Saxena, A. K.; Arvinda, S.; Gupta, B. D.; Kumara, H. M. S. Eur. J. Med. Chem. 2013, 63, 279.  doi: 10.1016/j.ejmech.2013.01.003

    15. [15]

      Xue, C.; Wityak, J.; Sielecki, T. M.; Pinto, D. J.; Batt, D. G.; Cain, G. A.; Sworin, M.; Rockwell, A. L.; Roderick, J. J.; Wang, S.; Orwat, M. J.; Frietze, W. E.; Bostrom, L. L.; Liu, J.; Higley, C. A.; Rankin, F. W.; Tobin, A. E.; Emmett, G.; Lalka, G. K.; Sze, J. Y.; DiMeo, S. V.; Mousa, S. A.; Thoolen, M. J.; Racanelli, A. L.; Hausner, E. A.; Reilly, T. M.; DeGrado, W. F.; Wexler, R. R.; Olson, R. E. J. Med. Chem. 1997, 40, 2064.

    16. [16]

      Cheng, K. F.; Al-Abed, Y. Bioorg. Med. Chem. Lett. 2006, 16, 3376.  doi: 10.1016/j.bmcl.2006.04.038

    17. [17]

      Goyard, D.; Kónya, B.; Chajistamatiou, A. S.; Chrysina, E. D.; Leroy, J.; Balzarin, S.; Tournier, M.; Tousch, D.; Petit, P.; Duret, C.; Maurel, P.; Somsák, L.; Docsa, T.; Gergely, P.; Praly, J.; Azay-Milhau, J.; Vidal, S. Eur. J. Med. Chem. 2016, 108, 444.  doi: 10.1016/j.ejmech.2015.12.004

    18. [18]

      (a) Talley, J. J.; Brown, D. L.; Carter, J. S.; Graneto, M. J.; Koboldt, C. M.; Masferrer, J. L.; Perkins, W. E.; Rogers, R. S.; Shaffer, A. F.; Zhang, Y. Y.; Zweifel, B. S.; Seibert, K. J. Med. Chem. 2000, 43, 775.
      (b) Talley, J. J.; Bertenshaw, S. R.; Brown, D. L.; Carter, J. S.; Graneto, M. J.; Kellogg, M. S.; Koboldt, C. M.; Yuan, J.; Zhang, Y. Y.; Seibert, K. J. Med. Chem. 2000, 43, 1661.

    19. [19]

      Taylor, R. D.; MacCoss, M.; Lawson, A. D. G. J. Med. Chem. 2014, 57, 5845.  doi: 10.1021/jm4017625

    20. [20]

      (a) Minter, A. R.; Fuller, A. A.; Mapp, A. K. J. Am. Chem. Soc. 2003, 125, 6846.
      (b) Fuller, A. A.; Chen, B.; Minter, A. R.; Mapp, A. K. J. Am. Chem. Soc. 2005, 127, 5376.

    21. [21]

      Jiang, D.; Peng, J.; Chen, Y. Org. Lett. 2008, 10, 1695.  doi: 10.1021/ol8002173

    22. [22]

      Marotta, E.; Micheloni, E.; Scardovi, N.; Righi, P. Org. Lett. 2001, 3, 727.  doi: 10.1021/ol0070379

    23. [23]

      For selected reviews, see: (a) Kiss, L.; Nonn, M.; Fülö p, F. Synthesis 2012, 44, 1951.
      (b) Vitale, P.; Scilimati, A. Synthesis 2013, 45, 2940.

    24. [24]

      Yoshimura, A.; Middleton, K. R.; Todora, A. D.; Kastern, B. J.; Koski, S. R.; Maskaev, A. V.; Zhdankin, V. V. Org. Lett. 2013, 15, 4010.  doi: 10.1021/ol401815n

    25. [25]

      For selected examples on the cycloaddition of oximes withalkenes, see: (a) Zhu, M.-K.; Zhao, J.-F.; Loh, T.-P. J. Am. Chem. Soc. 2010, 132, 6284.
      (b) Han, B.; Yang, X.-L.; Fang, R.; Yu, W.; Wang, C.; Duan, X.-Y.; Liu, S. Angew. Chem.. Int. Ed. 2012, 51, 8816.
      (c) Schmidt, E. Y.; Tatarinova, I. V.; Ivanova, E. V.; Zorina, N. V.; Ushakov, I. A.; Trofimov, B. A. Org. Lett. 2013, 15, 104.
      (d) Dong, J.; Ding, T.; Zhang, S.; Chen, Z.; Tu, Y. Angew. Chem.. Int. Ed. 2018, 57, 13192.

    26. [26]

      For selected examples on the cycloaddition of nitro com-pounds with alkenes, see: (a) Cecchi, L.; DeSarlo, F.; Machetti, F. Chem.-Eur. J. 2008, 14, 7903.
      (b) Trogu, E.; DeSarlo, F.; Machetti, F. Chem.-Eur. J. 2009, 15, 7940.
      (c) Chary, R. G.; Reddy, G. R.; Ganesh, Y. S. S.; Prasad, K. V.; Raghunadh, A.; Krishna, T.; Mukherjee, S.; Pal, M. Adv. Synth. Catal. 2014, 356, 160.

    27. [27]

      Han, B.; Yang, X.-L.; Fang, R.; Yu, W.; Wang, C.; Duan, X.-Y.; Liu, S. Angew. Chem.. Int. Ed. 2012, 51, 8816.  doi: 10.1002/anie.201203799

    28. [28]

      For reviews, see: (a) Zard, S. Z. Chem. Soc. Rev. 2008, 37, 1603.
      (b) Hartung, J. Eur. J. Org. Chem. 2001, 4, 619.
      (c) Jasperse, C. P.; Curran, D. P.; Fevig, T. L. Chem. Rev. 1991, 91, 1237.
      (d) Song, L.; Liu, K.; Li, C. Org. Lett. 2011, 13, 3434.
      (e) Liu, F.; Liu, K.; Yuan, X.; Li, C. J. Org. Chem. 2007, 72, 10231.

    29. [29]

      Jiang, D. H.; Peng, J. S.; Chen, Y. W. Org. Lett. 2008, 10, 1695.  doi: 10.1021/ol8002173

    30. [30]

      Zhu, M.-K.; Zhao, J.-F.; Loh, T.-P. J. Am. Chem. Soc. 2010, 132, 6284.  doi: 10.1021/ja100716x

    31. [31]

      Dong, K.-Y.; Qin, H.-T.; Bao, X.-X.; Liu, F.; Zhu, C. Org. Lett. 2014, 16, 5266.  doi: 10.1021/ol502246t

    32. [32]

      For selected reviews on oxidation reactions with molecular oxygen, see: (a) Mukaiyama, T.; Yamada, T. Bull. Chem. Soc. Jpn. 1995, 68, 17.
      (b) Punniyamurthy, T.; Velusamy, S.; Iqbal, J. Chem. Rev. 2005, 105, 2329.
      (c) Piera, J.; Bäckvall, J.-E. Angew. Chem.. Int. Ed. 2008, 47, 3506.
      (d) Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. Angew. Chem.. Int. Ed. 2011, 50, 11062.
      (e) Shi, Z.; Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3381.

    33. [33]

      (a) Bag, R.; Sar, D.; Punniyamurthy, T. Org. Lett. 2015, 17, 2010.
      (b) Andia, A. A.; Miner, M. R.; Woerpel, K. A. Org. Lett. 2015, 17, 2704.
      (c) Lu, Q.; Liu, Z.; Luo, Y.; Zhang, G.; Huang, Z.; Wang, H.; Liu, C.; Miller, J. T.; Lei, A. Org. Lett. 2015, 17, 3402.
      (d) Lu, Q.; Peng, P.; Luo, Y.; Zhao, Y.; Zhou, M.; Lei, A. Chem.-Eur. J. 2015, 21, 18580.
      (e) Xia, X.-F.; Zhu, S.-L.; Gu, Z.; Wang, H.; Li, W.; Liu, X.; Liang, Y.-M. J. Org. Chem. 2015, 80, 5572.
      (f) Zhang, J.-Z.; Tang, Y. Adv. Synth. Catal. 2016, 358, 752.
      (g) Miner, M. R.; Woerpel, K. A. Eur. J. Org. Chem. 2016, 34, 1860.
      (h) Bag, R.; Sar, D.; Punniyamurthy, T. Org. Biomol. Chem. 2016, 14, 3246.

    34. [34]

      For the metal-free aerobic dioxygenation of C=C bonds using hydrox-amic acids, see: (a) Schmidt, V. A.; Alexanian, E. J. Angew. Chem.. Int. Ed. 2010, 49, 4491.
      (b) Giglio, B. C.; Schmidt, V. A.; Alexanian, E. J. J. Am. Chem. Soc. 2011, 133, 13320.
      (c) Schmidt, V. A.; Alexanian, E. J. Chem. Sci. 2012, 3, 1672.

    35. [35]

      For the aerobic oxytrifluoromethylation of C=C bonds, see: (a) Zhang, C.-P.; Wang, Z.-L.; Chen, Q.-Y.; Zhang, C.-T.; Gu, Y.-C.; Xiao, J.-C. Chem. Commun. 2011, 47, 6632.
      (b) Deb, A.; Manna, S.; Modak, A.; Patra, T.; Maity, S.; Maiti, D. Angew. Chem.. Int. Ed. 2013, 52, 9747.
      (c) Yang, Y.; Liu, Y.; Jiang, Y.; Zhang, Y.; Vicic, D. J. Org. Chem. 2015, 80, 6639.
      (d) Liu, C.; Lu, Q.; Huang, Z.; Zhang, J.; Liao, F.; Peng, P.; Lei, A. Org. Lett. 2015, 17, 6034.

    36. [36]

      For the aerobic oxy-2, 2, 2-trifluoroethylation of C=C bonds, see: Li, L.; Huang, M.; Liu, C.; Xiao, J.-C.; Chen, Q.-Y.; Guo, Y.; Zhao, Z.-G. Org. Lett. 2015, 17, 4714.

    37. [37]

      For the aerobic oxysulfonylation of C=C bonds, see: (a) Lu, Q.; Zhang, J.; Wei, F.; Qi, Y.; Wang, H.; Liu, Z.; Lei, A. Angew. Chem.. Int. Ed. 2013, 52, 7156.
      (b) Wei, W.; Liu, C.; Yang, D.; Wen, J.; You, J.; Suo, Y.; Wang, H. Chem. Commun. 2013, 49, 10239.

    38. [38]

      Keshari, T.; Ya-dav, V. K.; Srivastava, V. P.; Yadav, L. D. S. Green Chem. 2014, 16, 3986.  doi: 10.1039/C4GC00857J

    39. [39]

      Zhou, S.-F.; Pan, X.; Zhou, Z.-H.; Shoberu, A.; Zou, J.-P. J. Org. Chem. 2015, 80, 3682.  doi: 10.1021/acs.joc.5b00123

    40. [40]

      Wei, W.; Ji, J.-X. Angew. Chem.. Int. Ed. 2011, 50, 9097.  doi: 10.1002/anie.201100219

    41. [41]

      Sun, X.; Li, X.; Song, S.; Zhu, Y.; Liang, Y.-F.; Jiao, N. J. Am. Chem. Soc. 2015, 137, 6059.  doi: 10.1021/jacs.5b02347

    42. [42]

      For autoxidative 4, 5-dihydroisoxazoline ring formation through thenitrooxylation of C=C bonds using stoichiometric amounts of tert-butylnitrite, see: Zhang, X.-W.; Xiao, Z.-F.; Zhuang, Y.-J.; Wang, M.-M.; Kang, Y.-B. Adv. Synth. Catal. 2016, 358, 1942.

    43. [43]

      (a) Castellano, S.; Kuck, D.; Vivi-ano, M.; Yoo, J.; López-Vallejo, F.; Conti, P.; Tamborini, L.; Pinto, A.; Medina-Franco, J. L.; Sbardella, G. J. Med. Chem. 2011, 54, 7663.
      (b) Patel, N. C.; Schwarz, J.; Hou, X. J.; Hoover, D. J.; Xie, L.; Fliri, A. J.; Gallaschun, R. J.; Lazzaro, J. T.; Bryce, D. K.; Hoffmann, W. E.; Hanks, A. N.; McGinnis, D.; Marr, E. S.; Gazard, J. L.; Hajós, M.; Scialis, R. J.; Hurst, R. S.; Shaffer, C. L.; Pandit, J.; O'Donnell, C. J. J. Med. Chem. 2013, 56, 9180.
      (c) Rodrigues, G. C.; Feijó, D. F.; Bozza, M. T.; Pan, P.; Vullo, D.; Parkkila, S.; Supuran, C. T.; Capasso, C.; Aguiar, A. P.; Vermelho, A. B. J. Med. Chem. 2014, 57, 298.

    44. [44]

      (a) Nishikawa, N. Method and Applications of Cycloaddition Reactions in Organic Syntheses, Wiley, Hoboken, NJ, 2014, pp. 565~598.
      (b) Feuer, H. Nitrile Oxides. Nitrones. and Nitronates in Organic Synthesis. Novel Strategies in Synthesis, Wiley, Hoboken, NJ, 2008, p. 760.
      (c) Kotyatkina, A. I.; Zhabinsky, V. N.; Khripach, V. A. Russ. Chem. Rev. 2001, 70, 641.
      (d) Kozikowski, A. P. Acc. Chem. Res. 1984, 17, 410.

    45. [45]

      Yamamoto, D.; Oguro, T.; Tashiro, Y.; Soga, M.; Miyashita, K.; Aso, Y.; Makino, K. Eur. J. Org. Chem. 2016, 31, 5216.

    46. [46]

      Yamamoto, D.; Soga, M.; Ansai, H.; Makino, K. Org. Chem. Front. 2016, 3, 1420.  doi: 10.1039/C6QO00318D

    47. [47]

      (a) Shcroft, C. P.; Hellier, P.; Pettman, A.; Wakinson, S. Org. Process Res. Dev. 2011, 15, 98.
      (b) Ettari, R.; Nizi, E.; Franceco, M. E. D.; Dude, M.-A.; Pradel, G.; Vičík, R.; Schirmeister, T.; Micale, N.; Grasso, S.; Zappalà, M. J. Med. Chem. 2008, 51, 988.
      (c) Reck, F.; Zhou, F.; Girardot, M.; Kern, G.; Eyermann, C. J.; Hales, N. J.; Ramsay, R. R.; Gravestock, M. B. J. Med. Chem. 2005, 48, 499.

    48. [48]

      (a) Sun, X.; Yu, F.; Ye, T.; Liang, X.; Ye, J. Chem.-Eur. J. 2011, 17, 430.
      (b) El-Awa, A.; Noshi, M. N.; du Jourdin, X. M.; Fuchs, P. L. Chem. Rev. 2009, 109, 2315.
      (c) Plesniak, K.; Zarecki, A.; Wicha, J. Top. Curr. Chem. 2007, 275, 163.

    49. [49]

      Gao, Y.; Tang, X.; Peng, J.; Hu, M.; Wu, W.; Jiang, H. Org. Lett. 2016, 18, 1158.  doi: 10.1021/acs.orglett.6b00272

    50. [50]

      Wang, L.-J.; Chen, M.-M.; Qi, L.; Xu, Z.-D.; Li, W. Chem. Commun. 2017, 52, 2056.

    51. [51]

      (a) Li, Y.; Studer, A. Angew. Chem.. Int. Ed. 2012, 51, 8221.
      (b) Zhang, B.; Studer, A. Org. Lett. 2013, 15, 4548.

    52. [52]

      Lv, Y. H.; Pu, W. Y.; Wang, Q. Q.; Chen, Q.; Niu, J. J.; Zhang, Q. Adv. Synth. Catal. 2017, 359, 3114.  doi: 10.1002/adsc.201700559

    53. [53]

      Sun, K.; Li, G. F.; Li, Y. Y.; Yu, J.; Zhao, Q.; Zhang, Z. G.; Zhang, G. S. Adv. Synth. Catal. 2020, 362, 10.

    54. [54]

      Wang, X.; Li, G. F.; Sun, K.; Zhang, B. Chin. J. Org. Chem. 2020, 40, 913(in Chinese).
       

    55. [55]

      Sun, K.; Wang, S. N.; Feng, R. R.; Zhang, Y. X.; Wang, X.; Zhang, Z. G.; Zhang, B. Org. Lett. 2019, 21, 2052.  doi: 10.1021/acs.orglett.9b00240

    56. [56]

      Liu, X.-Y.; Li, X.-T.; Gu, Q.-S.; Dong, X.-Y.; Meng, X. Angew. Chem.. Int. Ed. 2018, 57, 7668.  doi: 10.1002/anie.201804315

    57. [57]

      (a) Zhu, R.; Buchwald, S. L. Angew. Chem.. Int. Ed. 2013, 52, 12655.
      (b) Zhu, R.; Buchwald, S. L. J. Am. Chem. Soc. 2015, 137, 8069.
      (c) Zhang, W.; Wang, F.; McCann, S. D.; Wang, D.; Chen, P.; Stahl, S. S.; Liu, G. Science 2016, 353, 1014.
      (d) Wang, F.; Wang, D.; Wan, X.; Wu, L.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2016, 138, 15547.
      (e) Wang, D.; Wang, F.; Chen, P.; Lin, Z.; Liu, G. Angew. Chem.. Int. Ed. 2017, 56, 2054.
      (f) Wu, L.; Wang, F.; Wan, X.; Wang, D.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2017, 139, 2904.

    58. [58]

      (a) Lin, J.-S.; Dong, X.-Y.; Li, T.-T.; Jiang, N.-C.; Tan, B.; Liu, X.-Y. J. Am. Chem. Soc. 2016, 138, 9357.
      (b) Lin, J.-S.; Wang, F.-L.; Dong, X.-Y.; He, W.-W.; Yuan, Y.; Chen, S.; Liu, X.-Y. Nat. Commun. 2017, 8, 14841.
      (c) Cheng, Y.-F.; Dong, X.-Y.; Gu, Q.-S.; Yu, Z.-L.; Liu, X.-Y. Angew. Chem.. Int. Ed. 2017, 56, 8883.
      (d) Wang, F.-L.; Dong, X.-Y.; Lin, J.-S.; Zeng, Y.; Jiao, G.-Y.; Gu, Q.-S.; Guo, X.-Q.; Ma, C.-L.; Liu, X.-Y. Chem. Commun. 2017, 3, 979.

    59. [59]

      For selected references on Cu(Ⅱ)-O(N) species and reactions involvingalkyl radical intermediates, see: (a) Huffman, L. M.; Stahl, S. S. J. Am. Chem. Soc. 2008, 130, 9196.
      (b) Creutz, S. E.; Lotito, K. J.; Fu, G. C.; Peters, J. C. Science 2012, 338, 647.
      (c) Tran, B. L.; Li, B.; Driess, M.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 2555.

    60. [60]

      For selected examples, see: (a) He, Y.-T.; Li, L.-H.; Yang, Y.-F.; Wang, Y.-Q.; Luo, J.-Y.; Liu, X.-Y.; Liang, Y.-M. Chem. Commun. 2013, 49, 5687.
      (b) Wei, Q.; Chen, J.-R.; Hu, X.-Q.; Yang, X.-C.; Lu, B.; Xiao, W.-J. Org. Lett. 2015, 17, 4464.
      (c) Zhang, W.; Su, Y.; Wang, K.-H.; Wu, L.; Chang, B.; Shi, Y.; Huang, D.; Hu, Y. Org. Lett. 2017, 19, 376.

    61. [61]

      Mukaiyama, T.; Yamada, T. Bull. Chem. Soc. Jpn. 1995, 68, 17.  doi: 10.1246/bcsj.68.17

    62. [62]

      Li, W.; Jia, P.; Han, B.; Li, D.; Yu, W. Tetrahedron 2013, 69, 3274.  doi: 10.1016/j.tet.2013.02.032

    63. [63]

      Peng, X.-X.; Deng, Y.-J.; Yang, X.-L.; Zhang, L.; Yu, W.; Han, B. Org. Lett. 2014, 16, 4650.  doi: 10.1021/ol502258n

    64. [64]

      (a) Chen, Y.-X.; Qian, L.-F.; Zhang, W.; Han, B. Angew. Chem. 2008, 120, 9470.
      (b) Han, B.; Wang, C.; Han, R.-F.; Yu, W.; Duan, X.-Y.; Fang, R.; Yang, X.-L. Chem. Commun. 2011, 47, 7818.
      (c) Han, B.; Yang, X.-L.; Wang, C.; Bai, Y.-W.; Pan, T.-C.; Chen, X.; Yu, W. J. Org. Chem. 2012, 77, 1136.
      (d) Han, B.; Han, R.-F.; Ren, Y.-W.; Duan, X.-Y.; Xu, Y.-C.; Zhang, W. Tetrahedron 2011, 67, 5615.

    65. [65]

      (a) Pratt, D. A.; Blake, J. A.; Mulder, P.; Walton, J. C.; Korth, H.-G.; Ingold, K. U. J. Am. Chem. Soc. 2004, 126, 10667.
      (b) Chong, S.-S.; Fu, Y.; Liu, L.; Guo, Q.-X. J. Phys. Chem. A 2007, 111, 13112.

    66. [66]

      For transition metal catalyzed vicinal dioxygenation, oxyamination, and diamination of olefins, see: (a) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483.
      (b) Wang, A.; Jiang, H.; Chen, H. J. Am. Chem. Soc. 2009, 131, 3846.
      (c) Zhang, Y.; Sigman, M. S. J. Am. Chem. Soc. 2007, 129, 3076.
      (d) Fuller, P. H.; Kim, J.-W.; Chemler, S. R. J. Am. Chem. Soc. 2008, 130, 17638.
      (e) Williamson, K. S.; Yoon, T. P. J. Am. Chem. Soc. 2010, 132, 4570.
      (f) Du, H.; Zhao, B.; Shi, Y. J. Am. Chem. Soc. 2008, 130, 8590.

    67. [67]

      Selected examples of biological evaluation of isoxazolines: (a) Castellano, S.; Kuck, D.; Viviano, M.; Yoo, J.; López-Vallejo, F.; Conti, P.; Tamborini, L.; Pinto, A.; Medina-Franco, J. L.; Sbardella, G. J. J. Med. Chem. 2011, 54, 7663.
      (b) Poutiainen, P. K.; Venäläinen, T. A.; Peräkylä, M.; Matilainen, J. M.; Väisänen, S.; Honkakoski, P.; Laatikainen, R.; Pulkkinen, J. T. Bioorg. Med. Chem. 2010, 18, 3437.
      (c) Bode, J. W.; Carreira, E. M. Org. Lett. 2001, 3, 1587.
      (d) Curran, D. P.; Heffner, T. A. J. Org. Chem. 1990, 55, 4585.
      (e) Kozikowski, A. P. Acc. Chem. Res. 1984, 17, 410.
      (f) Jiang, D.; Peng, J.; Chen, Y. Org. Lett. 2008, 10, 1695.
      (g) Zhu, M.-K.; Zhao, J.-F.; Loh, T.-P. J. Am. Chem. Soc. 2010, 132, 6284.
      (h) He, Y.-H.; Li, L.-H.; Yang, Y.-F.; Wang, Y.-Q.; Luo, J.-Y.; Liu, X.-Y.; Liang, Y.-M. Chem. Commun. 2013, 49, 5687.
      (i) Tripathi, C. B.; Mukherjee, S. Angew. Chem.. Int. Ed. 2013, 52, 8450.

    68. [68]

      Some selected reviews: (a) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2002, 102, 2523.
      (b) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299.
      (c) Schafer, S.; Wirth, T. Angew. Chem.. Int. Ed. 2010, 49, 2786.
      (d) Dohi, T.; Kita, Y. Chem. Commun. 2009, 16, 2073.
      (e) Ngatimin, M.; Lupton, D. W. Aust. J. Chem. 2010, 63, 653.
      (f) Uyanik, M.; Ishihara, K. Chem. Commun. 2009, 16, 2086.
      (g) Ciufolini, M. A.; Braun, N. A.; Canesi, S.; Ousmer, M.; Chang, J.; Chai, D. Synthesis 2007, 3759.

    69. [69]

      Some selected examples where polyvalent iodine reagents mediate alkene difunctionalization: (a) Lovick, H. M.; Michael, F. E. J. Am. Chem. Soc. 2010, 132, 1249.
      (b) Wardrop, D. J.; Bowen, E. G.; Forslund, R. E.; Sussman, A. D.; Weerasekera, S. L. J. Am. Chem. Soc. 2010, 132, 1188.
      (c) Kang, Y.-B.; Gade, L. H. J. Am. Chem. Soc. 2011, 133, 3658.
      (d) Röben, C.; Souto, J. A.; Gonzálz, Y.; Lishchynskyi, A.; Muńiz, K. Angew. Chem.. Int. Ed. 2011, 50, 9478.
      (e) Cochran, B. M.; Michael, F. E. Org. Lett. 2008, 10, 5039.
      (f) Correa, A.; Tellitu, I.; Domínguez, E.; Sanmartin, R. J. Org. Chem. 2006, 71, 8316.
      (g) Muńiz, K.; Hövelmann, C. H.; Campos-Gómez, E.; Barluenga, J.; González, J. M.; Streuff, J.; Nieger, M. Chem.-Asian J. 2008, 3, 776.
      (h) Li, H.; Widenhoefer. Tetrahedron 2010, 66, 4827.
      (i) Fujita, M.; Wakita, W.; Sugimura, T. Chem. Commun. 2011, 47, 3983.

    70. [70]

      (a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
      (b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.

    71. [71]

      Kong, W.; Guo, Q.; Xu, Z.; Wang, G.; Jiang, X.; Wang, R. Org. Lett. 2015, 17, 3686.  doi: 10.1021/acs.orglett.5b01646

    72. [72]

      Yu, J.-M.; Cai, C. Org. Biomol. Chem. 2018, 16, 490.  doi: 10.1039/C7OB02892J

    73. [73]

      (a) Chen, F.; Yang, X. L.; Wu, Z. W.; Han, B. J. Org. Chem. 2016, 81, 3042.
      (b) Duan, X. Y.; Yang, X. L.; Fang, R.; Peng, X. X.; Yu, W.; Han, B. J. Org. Chem. 2013, 78, 10692.

    74. [74]

      Peng, X. X.; Deng, Y. J.; Yang, X. L.; Zhang, L.; Yu, W.; Han, B. Org. Lett. 2014, 16, 4650.  doi: 10.1021/ol502258n

    75. [75]

      Yang, X. L.; Chen, F.; Zhou, N. N.; Yu, W.; Han, B. Org. Lett. 2014, 16, 6476.  doi: 10.1021/ol503335k

    76. [76]

      (a) Kong, W.; Guo, Q.; Xu, Z.; Wang, G.; Jiang, X.; Wang, R. Org. Lett. 2015, 17, 3686.
      (b) Hu, X. Q.; Feng, G.; Chen, J. R.; Yan, D. M.; Zhao, Q. Q.; Wei, Q.; Xiao, W. J. Org. Biomol. Chem. 2015, 13, 3457.

    77. [77]

      Zhang, X.-W.; Xiao, Z.-F.; Zhuang, Y.-J.; Wang, M.-M.; Kang, Y.-B. Adv. Synth. Catal. 2016, 358, 1942.  doi: 10.1002/adsc.201600147

    78. [78]

      For iminoxyl radicals proved by EPR spectroscopy orother methods, see: (a) Zhu, X.; Wang, Y.-F.; Ren, W.; Zhang, F.-L.; Chiba, S. Org. Lett. 2013, 15, 3214.
      (b) Liu, Y.-Y.; Yang, X.-H.; Yang, J.; Song, R.-J.; Li, J.-H. Chem. Commun. 2014, 50, 6906.
      (c) Krylov, I. B.; Terentev, A. O.; Timofeev, V. P.; Shelimov, B. N.; Novikov, R. A.; Merkulova, V. M.; Nikishin, G. I. Adv. Synth. Catal. 2014, 356, 2266.
      (d) Yang, X.-L.; Chen, F.; Zhou, N.-N.; Yu, W.; Han, B. Org. Lett. 2014, 16, 6476.
      (e) Lemercier, B. C.; Pierce, J. G. Org. Lett. 2015, 17, 4542.

    79. [79]

      Peng, X.-X.; Deng, Y.-J.; Yang, X.-L.; Zhang, L.; Yu, W.; Han, B. Org. Lett. 2014, 16, 4650.  doi: 10.1021/ol502258n

    80. [80]

      (a) Galliker, B.; Kissner, R.; Nauser, T.; Koppenol, W. H. Chem.-Eur. J. 2009, 15, 6161.
      (b) Taniguchi, T.; Yajima, A.; Ishibashi, H. Adv. Synth. Catal. 2011, 353, 2643.

    81. [81]

      Lopes, E. F.; Penteado, F.; Thurow, S.; Pinz, M.; Reis, A.; Wilhelm, E.; Luchese, C.; Barcellos, T.; Dalberto, B.; Alves, D.; Silva, M. S. D.; Lenardão, E. J. Org. Chem. 2019, 84, 12452.  doi: 10.1021/acs.joc.9b01754

    82. [82]

      Triandafillidi, I.; Kokotos, C. G. Org. Lett. 2017, 19, 4254.

    83. [83]

      (a) Limnios, D.; Kokotos, C. G. ACS Catal. 2013, 3, 2239.
      (b) Limnios, D.; Kokotos, C. G. Chem.-Eur. J. 2014, 20, 559.
      (c) Limnios, D.; Kokotos, C. G. J. Org. Chem. 2014, 79, 4270.
      (d) Theodorou, A.; Limnios, D.; Kokotos, C. G. Chem.-Eur. J. 2015, 21, 5238.

    84. [84]

      Zhang, W. G.; Su, Y. P.; Wang, K.-H.; Wu, L. L.; Chang, B. B.; Shi, Y.; Huang, D. F.; Hu, Y. L. Org. Lett. 2017, 19, 376.  doi: 10.1021/acs.orglett.6b03582

    85. [85]

      (a) Tilstam, U.; Weinmann, H. Org. Process Res. Dev. 2002, 6, 384.
      (b) Mendonça, G. F.; Sindra, H. C.; de Almeida, L. S.; Esteves, P. M.; de Mattos, M. C. S. Tetrahedron Lett. 2009, 50, 473.
      (c) Mishra, A. K.; Nagarajaiah, H.; Moorthy, J. N. Eur. J. Org. Chem. 2015, 46, 2733.
      (d) Gaspa, S.; Porcheddu, A.; Luca, L. D. Adv. Synth. Catal. 2016, 358, 154.

    86. [86]

      (a) Luca, L. D.; Giacomelli, G.; Porcheddu, A. Org. Lett. 2001, 3, 3041.
      (b) Ye, J.; Wang, Y.; Chen, J.; Liang, X. Adv. Synth. Catal. 2004, 346, 691.
      (c) Sniady, A.; Morreale, M. S.; Wheeler, K. A.; Dembinski, R. Eur. J. Org. Chem. 2008, 39, 3449.
      (d) Jing, Y.; Daniliuc, C. G.; Studer, A. Org. Lett. 2014, 16, 4932.
      (e) Raihan, M. J.; Rajawinslin, R. R.; Kavala, V.; Kuo, C.-W.; Kuo, T.-S.; He, C.-H.; Huang, H.-N.; Yao, C.-F. J. Org. Chem. 2013, 78, 8872.

    87. [87]

      (a) Morimoto, H.; Tsubogo, T.; Litvinas, N. D.; Hartwig, J. F. Angew. Chem.. Int. Ed. 2011, 50, 3793.
      (b) Litvinas, N. D.; Fier, P. S.; Hartwig, J. F. Angew. Chem.. Int. Ed. 2012, 51, 536.
      (c) Oishi, M.; Kondo, H.; Amii, H. Chem. Commun. 2009, 14, 1909.
      (d) Weng, Z.; Lee, R.; Jia, W.; Yuan, Y.; Wang, W.; Feng, X.; Huang, K.-W. Organometallics 2011, 30, 3229.
      (e) Shimizu, N.; Kondo, H.; Oishi, M.; Fujikawa, K.; Komoda, K.; Amii, H. Org. Synth. 2016, 93, 147.

    88. [88]

      Wei, Q.; Chen, J.-R.; Hu, X.-Q.; Yang, X.-C.; Lu, B.; Xiao, W.-J. Org. Lett. 2015, 17, 4464.  doi: 10.1021/acs.orglett.5b02118

    89. [89]

      For reviews of difluoromethylation: (a) Rong, J.; Ni, C.; Hu, J. Asian J. Org. Chem. 2017, 6, 139.
      (b) Belhomme, M.-C.; Besset, T.; Poisson, T.; Pannecoucke, X. Chem.-Eur. J. 2015, 21, 12836.
      (c) Yerien, D. E.; Barata-Vallejo, S.; Postigo, A. Chem.-Eur. J. 2017, 23, 14676.

    90. [90]

      (a) Fujiwara, Y.; Dixon, J. A.; O'Hara, F.; Funder, E. D.; Dixon, D. D.; Rodri-guez, R. A.; Baxter, R. D.; Herle, B.; Sach, N.; Collins, M. R.; Ishihara, Y.; Baran, P. S. Nature 2012, 492, 95.
      (b) Fujiwara, Y.; Dixon, J. A.; Rodriguez, R. A.; Baxter, R. D.; Dixon, D. D.; Collins, M. R.; Blackmond, D. G.; Baran, P. S. J. Am. Chem. Soc. 2012, 134, 1494.

    91. [91]

      For selected examples, see: (a) Lin, Q.-Y.; Xu, X.-H.; Zhang, K.; Qing, F.-L. Angew. Chem.. Int. Ed. 2016, 55, 1479.
      (b) He, Z.; Tan, P.; Ni, C.; Hu, J. Org. Lett. 2015, 17, 1838.
      (c) Arai, Y.; Tomita, R.; Ando, G.; Koike, T.; Akita, M. Chem.-Eur. J. 2016, 22, 1262.
      (d) Zou, G.; Wang, X. Org. Biomol. Chem. 2017, 15, 8748.
      (e) Ran, Y.; Lin, Q.-Y.; Xu, X.-H.; Qing, F.-L. J. Org. Chem. 2016, 81, 7001.
      (f) Tang, X.-J.; Dolbier, W. R. Angew. Chem.. Int. Ed. 2015, 54, 4246.
      (g) Noto, N.; Koike, T.; Akita, M. J. Org. Chem. 2016, 81, 7064.
      (h) Tang, X.; Zhang, Z.; Dolbier, W. R. Chem.-Eur. J. 2015, 21, 18961.
      (i) Lin, Q.-Y.; Ran, Y.; Xu, X.-H.; Qing, F.-L. Org. Lett. 2016, 18, 2419.

    92. [92]

      Noto, N.; Koike, T.; Akita, M. Chem. Sci. 2017, 8, 6375.  doi: 10.1039/C7SC01703K

    93. [93]

      Xiong, P.; Xu, H.-H.; Song, J. S.; Xu, H.-C. J. Am. Chem. Soc. 2018, 140, 2460.  doi: 10.1021/jacs.8b00391

    94. [94]

      Zhu, M.; Fun, W. J.; Guo, W. B.; Tian, Y. F.; Wang, Z. Q.; Xu, C.; Ji, B. M. Eur. J. Org. Chem. 2019, 14, 1614.

    95. [95]

      Xiao, W.-J.; Hu, X.-Q.; Chen, J.; Chen, J.-R.; Yan, D.-M. Chem.-Eur. J. 2016, 22, 14141.  doi: 10.1002/chem.201602597

  • 加载中
    1. [1]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    2. [2]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    3. [3]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    4. [4]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    7. [7]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    8. [8]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    9. [9]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    10. [10]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    11. [11]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    12. [12]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    13. [13]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    14. [14]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    15. [15]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    17. [17]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    18. [18]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    19. [19]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    20. [20]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

Metrics
  • PDF Downloads(3)
  • Abstract views(1274)
  • HTML views(226)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return