Progress in the Synthesis of Isoxazoline Derivatives by Cycloylation of Allyl Oxime
- Corresponding author: Liu Yingjie, liuyj691@nenu.edu.cn Xu Ying, 894132290@qq.com
Citation:
Liu Yingjie, Meng Jianping, Li Chen, Lin Liqing, Xu Ying. Progress in the Synthesis of Isoxazoline Derivatives by Cycloylation of Allyl Oxime[J]. Chinese Journal of Organic Chemistry,
;2020, 40(9): 2742-2754.
doi:
10.6023/cjoc202003056
(a) Narasaka, K.; Kitamura, M. Eur. J. Org. Chem. 2005, 21, 4505.
(b) Kassa, J.; Kuca, K.; Bartosova, L.; Kunesova, G. Curr. Org. Chem. 2007, 11, 267.
For recent selected examples, see: (a) Sato, Y.; Kawaguchi, S.; Nomoto, A.; Ogawa, A. Angew. Chem.. Int. Ed. 2016, 55, 9700.
(b) Zhao, J.; Li, P.; Li, X.; Xia, C.; Li, F. Chem. Commun. 2016, 52, 3661.
(c) Cui, H.; Liu, X.; Wei, W.; Yang, D.; He, C.; Zhang, T.; Wang, H. J. Org. Chem. 2016, 81, 2252.
(d) Lan, X.-W.; Wang, N.-X.; Bai, C.-B.; Lan, C.-L.; Zhang, T.; Chen, S.-L.; Xing, Y. Org. Lett. 2016, 18, 5986.
Pozharskii, A. F.; Katritzky, A. R.; Soldatenkov, A. Heterocycles in Life and Society: An Introduction to Heterocyclic Chemistry. Biochemistry and Applications, John Wiley Sons, New Jersey, 2011, pp. 35~62.
Xu, Z.; Ye, T. Heterocycles in Natural Product Synthesis, Wiley-VCH, Darmstadt, 2011, pp. 459~505.
Alvarez-Builla, J.; Vaquero, J. J.; Barluenga, J. Modern Heterocyclic Chemistry, Wiley-VCH, Darmstadt, 2011, pp. 989~1045.
Li, J. J.; Hruby, V. Angew. Chem.. Int. Ed. 2017, 129, 2583.
doi: 10.1002/ange.201700015
Selected examples of biological evaluation of isoxazolines: (a) Castellano, S.; Kuck, D.; Viviano, M.; Yoo, J.; López-Vallejo, F.; Conti, P.; Tamborini, L.; Pinto, A.; Medina-Franco, J. L.; Sbardella, G. J. J. Med. Chem. 2011, 54, 7663.
(b) Poutiainen, P. K.; Venäläinen, T. A.; Peräkylä, M.; Matilainen, J. M.; Väisänen, S.; Honkakoski, P.; Laatikainen, R.; Pulkkinen, J. T. Bioorg. Med. Chem. 2010, 18, 3437.
(c) Namboothiri, I. N. N.; Rastogi, N. Isoxazolines from Nitro Compounds. Synthesis and Applications, Springer, Berlin, 2008, pp. 1~44.
(d) Bode, J. W.; Carreira, E. M. Org. Lett. 2001, 3, 1587.
For selected reviews, see: (a) Rück-Braun, K.; Freysoldt, T. H. E.; Wierschem, F. Chem. Soc. Rev. 2005, 34, 507.
(b) Kaur, K.; Kumar, V.; Sharma, A. K.; Gupta, G. K. Eur. J. Med. Chem. 2014, 77, 121.
(c) Hu, F.; Szostak, M. Adv. Synth. Catal. 2015, 357, 2583.
(d) Morita, T.; Yugandar, S.; Fuse, S.; Nakamura, H. Tetrahedron Lett. 2018, 59, 1159.
Zaki, Y. H.; Sayed, A. R.; Elroby, S. A. Chem. Cent. J. 2016, 10, 17.
doi: 10.1186/s13065-016-0163-2
Suresh, G.; Nadh, R. V.; Srinivasu, N.; Kaushal, K. Synth. Commun. 2016, 46, 1972.
doi: 10.1080/00397911.2016.1242748
Ning, G. H.; Zhao, W. T.; Bian, Q.; Tang, X. Y. Chin. J. Org. Chem. 2014, 34, 1800(in Chinese).
Jiang, S.; Tsikolia, M.; Bernier, U. R.; Bloomquist, J. R. Int. J. Environ. Res. Public Health 2017, 14, 154.
doi: 10.3390/ijerph14020154
Filali, I.; Bouajila, J.; Znati, M.; Garah, B.-E.; Jannet, H. B. J. Med. Chem. 2015, 30, 371.
Khazir, J.; Singh, P. P.; Reddy, D. M.; Hyder, I.; Shafi, S.; Sawant, S. D.; Chashoo, G.; Mahajan, A.; Alamc, M. S.; Saxena, A. K.; Arvinda, S.; Gupta, B. D.; Kumara, H. M. S. Eur. J. Med. Chem. 2013, 63, 279.
doi: 10.1016/j.ejmech.2013.01.003
Xue, C.; Wityak, J.; Sielecki, T. M.; Pinto, D. J.; Batt, D. G.; Cain, G. A.; Sworin, M.; Rockwell, A. L.; Roderick, J. J.; Wang, S.; Orwat, M. J.; Frietze, W. E.; Bostrom, L. L.; Liu, J.; Higley, C. A.; Rankin, F. W.; Tobin, A. E.; Emmett, G.; Lalka, G. K.; Sze, J. Y.; DiMeo, S. V.; Mousa, S. A.; Thoolen, M. J.; Racanelli, A. L.; Hausner, E. A.; Reilly, T. M.; DeGrado, W. F.; Wexler, R. R.; Olson, R. E. J. Med. Chem. 1997, 40, 2064.
Cheng, K. F.; Al-Abed, Y. Bioorg. Med. Chem. Lett. 2006, 16, 3376.
doi: 10.1016/j.bmcl.2006.04.038
Goyard, D.; Kónya, B.; Chajistamatiou, A. S.; Chrysina, E. D.; Leroy, J.; Balzarin, S.; Tournier, M.; Tousch, D.; Petit, P.; Duret, C.; Maurel, P.; Somsák, L.; Docsa, T.; Gergely, P.; Praly, J.; Azay-Milhau, J.; Vidal, S. Eur. J. Med. Chem. 2016, 108, 444.
doi: 10.1016/j.ejmech.2015.12.004
(a) Talley, J. J.; Brown, D. L.; Carter, J. S.; Graneto, M. J.; Koboldt, C. M.; Masferrer, J. L.; Perkins, W. E.; Rogers, R. S.; Shaffer, A. F.; Zhang, Y. Y.; Zweifel, B. S.; Seibert, K. J. Med. Chem. 2000, 43, 775.
(b) Talley, J. J.; Bertenshaw, S. R.; Brown, D. L.; Carter, J. S.; Graneto, M. J.; Kellogg, M. S.; Koboldt, C. M.; Yuan, J.; Zhang, Y. Y.; Seibert, K. J. Med. Chem. 2000, 43, 1661.
Taylor, R. D.; MacCoss, M.; Lawson, A. D. G. J. Med. Chem. 2014, 57, 5845.
doi: 10.1021/jm4017625
(a) Minter, A. R.; Fuller, A. A.; Mapp, A. K. J. Am. Chem. Soc. 2003, 125, 6846.
(b) Fuller, A. A.; Chen, B.; Minter, A. R.; Mapp, A. K. J. Am. Chem. Soc. 2005, 127, 5376.
Jiang, D.; Peng, J.; Chen, Y. Org. Lett. 2008, 10, 1695.
doi: 10.1021/ol8002173
Marotta, E.; Micheloni, E.; Scardovi, N.; Righi, P. Org. Lett. 2001, 3, 727.
doi: 10.1021/ol0070379
For selected reviews, see: (a) Kiss, L.; Nonn, M.; Fülö p, F. Synthesis 2012, 44, 1951.
(b) Vitale, P.; Scilimati, A. Synthesis 2013, 45, 2940.
Yoshimura, A.; Middleton, K. R.; Todora, A. D.; Kastern, B. J.; Koski, S. R.; Maskaev, A. V.; Zhdankin, V. V. Org. Lett. 2013, 15, 4010.
doi: 10.1021/ol401815n
For selected examples on the cycloaddition of oximes withalkenes, see: (a) Zhu, M.-K.; Zhao, J.-F.; Loh, T.-P. J. Am. Chem. Soc. 2010, 132, 6284.
(b) Han, B.; Yang, X.-L.; Fang, R.; Yu, W.; Wang, C.; Duan, X.-Y.; Liu, S. Angew. Chem.. Int. Ed. 2012, 51, 8816.
(c) Schmidt, E. Y.; Tatarinova, I. V.; Ivanova, E. V.; Zorina, N. V.; Ushakov, I. A.; Trofimov, B. A. Org. Lett. 2013, 15, 104.
(d) Dong, J.; Ding, T.; Zhang, S.; Chen, Z.; Tu, Y. Angew. Chem.. Int. Ed. 2018, 57, 13192.
For selected examples on the cycloaddition of nitro com-pounds with alkenes, see: (a) Cecchi, L.; DeSarlo, F.; Machetti, F. Chem.-Eur. J. 2008, 14, 7903.
(b) Trogu, E.; DeSarlo, F.; Machetti, F. Chem.-Eur. J. 2009, 15, 7940.
(c) Chary, R. G.; Reddy, G. R.; Ganesh, Y. S. S.; Prasad, K. V.; Raghunadh, A.; Krishna, T.; Mukherjee, S.; Pal, M. Adv. Synth. Catal. 2014, 356, 160.
Han, B.; Yang, X.-L.; Fang, R.; Yu, W.; Wang, C.; Duan, X.-Y.; Liu, S. Angew. Chem.. Int. Ed. 2012, 51, 8816.
doi: 10.1002/anie.201203799
For reviews, see: (a) Zard, S. Z. Chem. Soc. Rev. 2008, 37, 1603.
(b) Hartung, J. Eur. J. Org. Chem. 2001, 4, 619.
(c) Jasperse, C. P.; Curran, D. P.; Fevig, T. L. Chem. Rev. 1991, 91, 1237.
(d) Song, L.; Liu, K.; Li, C. Org. Lett. 2011, 13, 3434.
(e) Liu, F.; Liu, K.; Yuan, X.; Li, C. J. Org. Chem. 2007, 72, 10231.
Jiang, D. H.; Peng, J. S.; Chen, Y. W. Org. Lett. 2008, 10, 1695.
doi: 10.1021/ol8002173
Zhu, M.-K.; Zhao, J.-F.; Loh, T.-P. J. Am. Chem. Soc. 2010, 132, 6284.
doi: 10.1021/ja100716x
Dong, K.-Y.; Qin, H.-T.; Bao, X.-X.; Liu, F.; Zhu, C. Org. Lett. 2014, 16, 5266.
doi: 10.1021/ol502246t
For selected reviews on oxidation reactions with molecular oxygen, see: (a) Mukaiyama, T.; Yamada, T. Bull. Chem. Soc. Jpn. 1995, 68, 17.
(b) Punniyamurthy, T.; Velusamy, S.; Iqbal, J. Chem. Rev. 2005, 105, 2329.
(c) Piera, J.; Bäckvall, J.-E. Angew. Chem.. Int. Ed. 2008, 47, 3506.
(d) Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. Angew. Chem.. Int. Ed. 2011, 50, 11062.
(e) Shi, Z.; Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3381.
(a) Bag, R.; Sar, D.; Punniyamurthy, T. Org. Lett. 2015, 17, 2010.
(b) Andia, A. A.; Miner, M. R.; Woerpel, K. A. Org. Lett. 2015, 17, 2704.
(c) Lu, Q.; Liu, Z.; Luo, Y.; Zhang, G.; Huang, Z.; Wang, H.; Liu, C.; Miller, J. T.; Lei, A. Org. Lett. 2015, 17, 3402.
(d) Lu, Q.; Peng, P.; Luo, Y.; Zhao, Y.; Zhou, M.; Lei, A. Chem.-Eur. J. 2015, 21, 18580.
(e) Xia, X.-F.; Zhu, S.-L.; Gu, Z.; Wang, H.; Li, W.; Liu, X.; Liang, Y.-M. J. Org. Chem. 2015, 80, 5572.
(f) Zhang, J.-Z.; Tang, Y. Adv. Synth. Catal. 2016, 358, 752.
(g) Miner, M. R.; Woerpel, K. A. Eur. J. Org. Chem. 2016, 34, 1860.
(h) Bag, R.; Sar, D.; Punniyamurthy, T. Org. Biomol. Chem. 2016, 14, 3246.
For the metal-free aerobic dioxygenation of C=C bonds using hydrox-amic acids, see: (a) Schmidt, V. A.; Alexanian, E. J. Angew. Chem.. Int. Ed. 2010, 49, 4491.
(b) Giglio, B. C.; Schmidt, V. A.; Alexanian, E. J. J. Am. Chem. Soc. 2011, 133, 13320.
(c) Schmidt, V. A.; Alexanian, E. J. Chem. Sci. 2012, 3, 1672.
For the aerobic oxytrifluoromethylation of C=C bonds, see: (a) Zhang, C.-P.; Wang, Z.-L.; Chen, Q.-Y.; Zhang, C.-T.; Gu, Y.-C.; Xiao, J.-C. Chem. Commun. 2011, 47, 6632.
(b) Deb, A.; Manna, S.; Modak, A.; Patra, T.; Maity, S.; Maiti, D. Angew. Chem.. Int. Ed. 2013, 52, 9747.
(c) Yang, Y.; Liu, Y.; Jiang, Y.; Zhang, Y.; Vicic, D. J. Org. Chem. 2015, 80, 6639.
(d) Liu, C.; Lu, Q.; Huang, Z.; Zhang, J.; Liao, F.; Peng, P.; Lei, A. Org. Lett. 2015, 17, 6034.
For the aerobic oxy-2, 2, 2-trifluoroethylation of C=C bonds, see: Li, L.; Huang, M.; Liu, C.; Xiao, J.-C.; Chen, Q.-Y.; Guo, Y.; Zhao, Z.-G. Org. Lett. 2015, 17, 4714.
For the aerobic oxysulfonylation of C=C bonds, see: (a) Lu, Q.; Zhang, J.; Wei, F.; Qi, Y.; Wang, H.; Liu, Z.; Lei, A. Angew. Chem.. Int. Ed. 2013, 52, 7156.
(b) Wei, W.; Liu, C.; Yang, D.; Wen, J.; You, J.; Suo, Y.; Wang, H. Chem. Commun. 2013, 49, 10239.
Keshari, T.; Ya-dav, V. K.; Srivastava, V. P.; Yadav, L. D. S. Green Chem. 2014, 16, 3986.
doi: 10.1039/C4GC00857J
Zhou, S.-F.; Pan, X.; Zhou, Z.-H.; Shoberu, A.; Zou, J.-P. J. Org. Chem. 2015, 80, 3682.
doi: 10.1021/acs.joc.5b00123
Wei, W.; Ji, J.-X. Angew. Chem.. Int. Ed. 2011, 50, 9097.
doi: 10.1002/anie.201100219
Sun, X.; Li, X.; Song, S.; Zhu, Y.; Liang, Y.-F.; Jiao, N. J. Am. Chem. Soc. 2015, 137, 6059.
doi: 10.1021/jacs.5b02347
For autoxidative 4, 5-dihydroisoxazoline ring formation through thenitrooxylation of C=C bonds using stoichiometric amounts of tert-butylnitrite, see: Zhang, X.-W.; Xiao, Z.-F.; Zhuang, Y.-J.; Wang, M.-M.; Kang, Y.-B. Adv. Synth. Catal. 2016, 358, 1942.
(a) Castellano, S.; Kuck, D.; Vivi-ano, M.; Yoo, J.; López-Vallejo, F.; Conti, P.; Tamborini, L.; Pinto, A.; Medina-Franco, J. L.; Sbardella, G. J. Med. Chem. 2011, 54, 7663.
(b) Patel, N. C.; Schwarz, J.; Hou, X. J.; Hoover, D. J.; Xie, L.; Fliri, A. J.; Gallaschun, R. J.; Lazzaro, J. T.; Bryce, D. K.; Hoffmann, W. E.; Hanks, A. N.; McGinnis, D.; Marr, E. S.; Gazard, J. L.; Hajós, M.; Scialis, R. J.; Hurst, R. S.; Shaffer, C. L.; Pandit, J.; O'Donnell, C. J. J. Med. Chem. 2013, 56, 9180.
(c) Rodrigues, G. C.; Feijó, D. F.; Bozza, M. T.; Pan, P.; Vullo, D.; Parkkila, S.; Supuran, C. T.; Capasso, C.; Aguiar, A. P.; Vermelho, A. B. J. Med. Chem. 2014, 57, 298.
(a) Nishikawa, N. Method and Applications of Cycloaddition Reactions in Organic Syntheses, Wiley, Hoboken, NJ, 2014, pp. 565~598.
(b) Feuer, H. Nitrile Oxides. Nitrones. and Nitronates in Organic Synthesis. Novel Strategies in Synthesis, Wiley, Hoboken, NJ, 2008, p. 760.
(c) Kotyatkina, A. I.; Zhabinsky, V. N.; Khripach, V. A. Russ. Chem. Rev. 2001, 70, 641.
(d) Kozikowski, A. P. Acc. Chem. Res. 1984, 17, 410.
Yamamoto, D.; Oguro, T.; Tashiro, Y.; Soga, M.; Miyashita, K.; Aso, Y.; Makino, K. Eur. J. Org. Chem. 2016, 31, 5216.
Yamamoto, D.; Soga, M.; Ansai, H.; Makino, K. Org. Chem. Front. 2016, 3, 1420.
doi: 10.1039/C6QO00318D
(a) Shcroft, C. P.; Hellier, P.; Pettman, A.; Wakinson, S. Org. Process Res. Dev. 2011, 15, 98.
(b) Ettari, R.; Nizi, E.; Franceco, M. E. D.; Dude, M.-A.; Pradel, G.; Vičík, R.; Schirmeister, T.; Micale, N.; Grasso, S.; Zappalà, M. J. Med. Chem. 2008, 51, 988.
(c) Reck, F.; Zhou, F.; Girardot, M.; Kern, G.; Eyermann, C. J.; Hales, N. J.; Ramsay, R. R.; Gravestock, M. B. J. Med. Chem. 2005, 48, 499.
(a) Sun, X.; Yu, F.; Ye, T.; Liang, X.; Ye, J. Chem.-Eur. J. 2011, 17, 430.
(b) El-Awa, A.; Noshi, M. N.; du Jourdin, X. M.; Fuchs, P. L. Chem. Rev. 2009, 109, 2315.
(c) Plesniak, K.; Zarecki, A.; Wicha, J. Top. Curr. Chem. 2007, 275, 163.
Gao, Y.; Tang, X.; Peng, J.; Hu, M.; Wu, W.; Jiang, H. Org. Lett. 2016, 18, 1158.
doi: 10.1021/acs.orglett.6b00272
Wang, L.-J.; Chen, M.-M.; Qi, L.; Xu, Z.-D.; Li, W. Chem. Commun. 2017, 52, 2056.
(a) Li, Y.; Studer, A. Angew. Chem.. Int. Ed. 2012, 51, 8221.
(b) Zhang, B.; Studer, A. Org. Lett. 2013, 15, 4548.
Lv, Y. H.; Pu, W. Y.; Wang, Q. Q.; Chen, Q.; Niu, J. J.; Zhang, Q. Adv. Synth. Catal. 2017, 359, 3114.
doi: 10.1002/adsc.201700559
Sun, K.; Li, G. F.; Li, Y. Y.; Yu, J.; Zhao, Q.; Zhang, Z. G.; Zhang, G. S. Adv. Synth. Catal. 2020, 362, 10.
Wang, X.; Li, G. F.; Sun, K.; Zhang, B. Chin. J. Org. Chem. 2020, 40, 913(in Chinese).
Sun, K.; Wang, S. N.; Feng, R. R.; Zhang, Y. X.; Wang, X.; Zhang, Z. G.; Zhang, B. Org. Lett. 2019, 21, 2052.
doi: 10.1021/acs.orglett.9b00240
Liu, X.-Y.; Li, X.-T.; Gu, Q.-S.; Dong, X.-Y.; Meng, X. Angew. Chem.. Int. Ed. 2018, 57, 7668.
doi: 10.1002/anie.201804315
(a) Zhu, R.; Buchwald, S. L. Angew. Chem.. Int. Ed. 2013, 52, 12655.
(b) Zhu, R.; Buchwald, S. L. J. Am. Chem. Soc. 2015, 137, 8069.
(c) Zhang, W.; Wang, F.; McCann, S. D.; Wang, D.; Chen, P.; Stahl, S. S.; Liu, G. Science 2016, 353, 1014.
(d) Wang, F.; Wang, D.; Wan, X.; Wu, L.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2016, 138, 15547.
(e) Wang, D.; Wang, F.; Chen, P.; Lin, Z.; Liu, G. Angew. Chem.. Int. Ed. 2017, 56, 2054.
(f) Wu, L.; Wang, F.; Wan, X.; Wang, D.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2017, 139, 2904.
(a) Lin, J.-S.; Dong, X.-Y.; Li, T.-T.; Jiang, N.-C.; Tan, B.; Liu, X.-Y. J. Am. Chem. Soc. 2016, 138, 9357.
(b) Lin, J.-S.; Wang, F.-L.; Dong, X.-Y.; He, W.-W.; Yuan, Y.; Chen, S.; Liu, X.-Y. Nat. Commun. 2017, 8, 14841.
(c) Cheng, Y.-F.; Dong, X.-Y.; Gu, Q.-S.; Yu, Z.-L.; Liu, X.-Y. Angew. Chem.. Int. Ed. 2017, 56, 8883.
(d) Wang, F.-L.; Dong, X.-Y.; Lin, J.-S.; Zeng, Y.; Jiao, G.-Y.; Gu, Q.-S.; Guo, X.-Q.; Ma, C.-L.; Liu, X.-Y. Chem. Commun. 2017, 3, 979.
For selected references on Cu(Ⅱ)-O(N) species and reactions involvingalkyl radical intermediates, see: (a) Huffman, L. M.; Stahl, S. S. J. Am. Chem. Soc. 2008, 130, 9196.
(b) Creutz, S. E.; Lotito, K. J.; Fu, G. C.; Peters, J. C. Science 2012, 338, 647.
(c) Tran, B. L.; Li, B.; Driess, M.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 2555.
For selected examples, see: (a) He, Y.-T.; Li, L.-H.; Yang, Y.-F.; Wang, Y.-Q.; Luo, J.-Y.; Liu, X.-Y.; Liang, Y.-M. Chem. Commun. 2013, 49, 5687.
(b) Wei, Q.; Chen, J.-R.; Hu, X.-Q.; Yang, X.-C.; Lu, B.; Xiao, W.-J. Org. Lett. 2015, 17, 4464.
(c) Zhang, W.; Su, Y.; Wang, K.-H.; Wu, L.; Chang, B.; Shi, Y.; Huang, D.; Hu, Y. Org. Lett. 2017, 19, 376.
Mukaiyama, T.; Yamada, T. Bull. Chem. Soc. Jpn. 1995, 68, 17.
doi: 10.1246/bcsj.68.17
Li, W.; Jia, P.; Han, B.; Li, D.; Yu, W. Tetrahedron 2013, 69, 3274.
doi: 10.1016/j.tet.2013.02.032
Peng, X.-X.; Deng, Y.-J.; Yang, X.-L.; Zhang, L.; Yu, W.; Han, B. Org. Lett. 2014, 16, 4650.
doi: 10.1021/ol502258n
(a) Chen, Y.-X.; Qian, L.-F.; Zhang, W.; Han, B. Angew. Chem. 2008, 120, 9470.
(b) Han, B.; Wang, C.; Han, R.-F.; Yu, W.; Duan, X.-Y.; Fang, R.; Yang, X.-L. Chem. Commun. 2011, 47, 7818.
(c) Han, B.; Yang, X.-L.; Wang, C.; Bai, Y.-W.; Pan, T.-C.; Chen, X.; Yu, W. J. Org. Chem. 2012, 77, 1136.
(d) Han, B.; Han, R.-F.; Ren, Y.-W.; Duan, X.-Y.; Xu, Y.-C.; Zhang, W. Tetrahedron 2011, 67, 5615.
(a) Pratt, D. A.; Blake, J. A.; Mulder, P.; Walton, J. C.; Korth, H.-G.; Ingold, K. U. J. Am. Chem. Soc. 2004, 126, 10667.
(b) Chong, S.-S.; Fu, Y.; Liu, L.; Guo, Q.-X. J. Phys. Chem. A 2007, 111, 13112.
For transition metal catalyzed vicinal dioxygenation, oxyamination, and diamination of olefins, see: (a) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483.
(b) Wang, A.; Jiang, H.; Chen, H. J. Am. Chem. Soc. 2009, 131, 3846.
(c) Zhang, Y.; Sigman, M. S. J. Am. Chem. Soc. 2007, 129, 3076.
(d) Fuller, P. H.; Kim, J.-W.; Chemler, S. R. J. Am. Chem. Soc. 2008, 130, 17638.
(e) Williamson, K. S.; Yoon, T. P. J. Am. Chem. Soc. 2010, 132, 4570.
(f) Du, H.; Zhao, B.; Shi, Y. J. Am. Chem. Soc. 2008, 130, 8590.
Selected examples of biological evaluation of isoxazolines: (a) Castellano, S.; Kuck, D.; Viviano, M.; Yoo, J.; López-Vallejo, F.; Conti, P.; Tamborini, L.; Pinto, A.; Medina-Franco, J. L.; Sbardella, G. J. J. Med. Chem. 2011, 54, 7663.
(b) Poutiainen, P. K.; Venäläinen, T. A.; Peräkylä, M.; Matilainen, J. M.; Väisänen, S.; Honkakoski, P.; Laatikainen, R.; Pulkkinen, J. T. Bioorg. Med. Chem. 2010, 18, 3437.
(c) Bode, J. W.; Carreira, E. M. Org. Lett. 2001, 3, 1587.
(d) Curran, D. P.; Heffner, T. A. J. Org. Chem. 1990, 55, 4585.
(e) Kozikowski, A. P. Acc. Chem. Res. 1984, 17, 410.
(f) Jiang, D.; Peng, J.; Chen, Y. Org. Lett. 2008, 10, 1695.
(g) Zhu, M.-K.; Zhao, J.-F.; Loh, T.-P. J. Am. Chem. Soc. 2010, 132, 6284.
(h) He, Y.-H.; Li, L.-H.; Yang, Y.-F.; Wang, Y.-Q.; Luo, J.-Y.; Liu, X.-Y.; Liang, Y.-M. Chem. Commun. 2013, 49, 5687.
(i) Tripathi, C. B.; Mukherjee, S. Angew. Chem.. Int. Ed. 2013, 52, 8450.
Some selected reviews: (a) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2002, 102, 2523.
(b) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299.
(c) Schafer, S.; Wirth, T. Angew. Chem.. Int. Ed. 2010, 49, 2786.
(d) Dohi, T.; Kita, Y. Chem. Commun. 2009, 16, 2073.
(e) Ngatimin, M.; Lupton, D. W. Aust. J. Chem. 2010, 63, 653.
(f) Uyanik, M.; Ishihara, K. Chem. Commun. 2009, 16, 2086.
(g) Ciufolini, M. A.; Braun, N. A.; Canesi, S.; Ousmer, M.; Chang, J.; Chai, D. Synthesis 2007, 3759.
Some selected examples where polyvalent iodine reagents mediate alkene difunctionalization: (a) Lovick, H. M.; Michael, F. E. J. Am. Chem. Soc. 2010, 132, 1249.
(b) Wardrop, D. J.; Bowen, E. G.; Forslund, R. E.; Sussman, A. D.; Weerasekera, S. L. J. Am. Chem. Soc. 2010, 132, 1188.
(c) Kang, Y.-B.; Gade, L. H. J. Am. Chem. Soc. 2011, 133, 3658.
(d) Röben, C.; Souto, J. A.; Gonzálz, Y.; Lishchynskyi, A.; Muńiz, K. Angew. Chem.. Int. Ed. 2011, 50, 9478.
(e) Cochran, B. M.; Michael, F. E. Org. Lett. 2008, 10, 5039.
(f) Correa, A.; Tellitu, I.; Domínguez, E.; Sanmartin, R. J. Org. Chem. 2006, 71, 8316.
(g) Muńiz, K.; Hövelmann, C. H.; Campos-Gómez, E.; Barluenga, J.; González, J. M.; Streuff, J.; Nieger, M. Chem.-Asian J. 2008, 3, 776.
(h) Li, H.; Widenhoefer. Tetrahedron 2010, 66, 4827.
(i) Fujita, M.; Wakita, W.; Sugimura, T. Chem. Commun. 2011, 47, 3983.
(a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
Kong, W.; Guo, Q.; Xu, Z.; Wang, G.; Jiang, X.; Wang, R. Org. Lett. 2015, 17, 3686.
doi: 10.1021/acs.orglett.5b01646
Yu, J.-M.; Cai, C. Org. Biomol. Chem. 2018, 16, 490.
doi: 10.1039/C7OB02892J
(a) Chen, F.; Yang, X. L.; Wu, Z. W.; Han, B. J. Org. Chem. 2016, 81, 3042.
(b) Duan, X. Y.; Yang, X. L.; Fang, R.; Peng, X. X.; Yu, W.; Han, B. J. Org. Chem. 2013, 78, 10692.
Peng, X. X.; Deng, Y. J.; Yang, X. L.; Zhang, L.; Yu, W.; Han, B. Org. Lett. 2014, 16, 4650.
doi: 10.1021/ol502258n
Yang, X. L.; Chen, F.; Zhou, N. N.; Yu, W.; Han, B. Org. Lett. 2014, 16, 6476.
doi: 10.1021/ol503335k
(a) Kong, W.; Guo, Q.; Xu, Z.; Wang, G.; Jiang, X.; Wang, R. Org. Lett. 2015, 17, 3686.
(b) Hu, X. Q.; Feng, G.; Chen, J. R.; Yan, D. M.; Zhao, Q. Q.; Wei, Q.; Xiao, W. J. Org. Biomol. Chem. 2015, 13, 3457.
Zhang, X.-W.; Xiao, Z.-F.; Zhuang, Y.-J.; Wang, M.-M.; Kang, Y.-B. Adv. Synth. Catal. 2016, 358, 1942.
doi: 10.1002/adsc.201600147
For iminoxyl radicals proved by EPR spectroscopy orother methods, see: (a) Zhu, X.; Wang, Y.-F.; Ren, W.; Zhang, F.-L.; Chiba, S. Org. Lett. 2013, 15, 3214.
(b) Liu, Y.-Y.; Yang, X.-H.; Yang, J.; Song, R.-J.; Li, J.-H. Chem. Commun. 2014, 50, 6906.
(c) Krylov, I. B.; Terentev, A. O.; Timofeev, V. P.; Shelimov, B. N.; Novikov, R. A.; Merkulova, V. M.; Nikishin, G. I. Adv. Synth. Catal. 2014, 356, 2266.
(d) Yang, X.-L.; Chen, F.; Zhou, N.-N.; Yu, W.; Han, B. Org. Lett. 2014, 16, 6476.
(e) Lemercier, B. C.; Pierce, J. G. Org. Lett. 2015, 17, 4542.
Peng, X.-X.; Deng, Y.-J.; Yang, X.-L.; Zhang, L.; Yu, W.; Han, B. Org. Lett. 2014, 16, 4650.
doi: 10.1021/ol502258n
(a) Galliker, B.; Kissner, R.; Nauser, T.; Koppenol, W. H. Chem.-Eur. J. 2009, 15, 6161.
(b) Taniguchi, T.; Yajima, A.; Ishibashi, H. Adv. Synth. Catal. 2011, 353, 2643.
Lopes, E. F.; Penteado, F.; Thurow, S.; Pinz, M.; Reis, A.; Wilhelm, E.; Luchese, C.; Barcellos, T.; Dalberto, B.; Alves, D.; Silva, M. S. D.; Lenardão, E. J. Org. Chem. 2019, 84, 12452.
doi: 10.1021/acs.joc.9b01754
Triandafillidi, I.; Kokotos, C. G. Org. Lett. 2017, 19, 4254.
(a) Limnios, D.; Kokotos, C. G. ACS Catal. 2013, 3, 2239.
(b) Limnios, D.; Kokotos, C. G. Chem.-Eur. J. 2014, 20, 559.
(c) Limnios, D.; Kokotos, C. G. J. Org. Chem. 2014, 79, 4270.
(d) Theodorou, A.; Limnios, D.; Kokotos, C. G. Chem.-Eur. J. 2015, 21, 5238.
Zhang, W. G.; Su, Y. P.; Wang, K.-H.; Wu, L. L.; Chang, B. B.; Shi, Y.; Huang, D. F.; Hu, Y. L. Org. Lett. 2017, 19, 376.
doi: 10.1021/acs.orglett.6b03582
(a) Tilstam, U.; Weinmann, H. Org. Process Res. Dev. 2002, 6, 384.
(b) Mendonça, G. F.; Sindra, H. C.; de Almeida, L. S.; Esteves, P. M.; de Mattos, M. C. S. Tetrahedron Lett. 2009, 50, 473.
(c) Mishra, A. K.; Nagarajaiah, H.; Moorthy, J. N. Eur. J. Org. Chem. 2015, 46, 2733.
(d) Gaspa, S.; Porcheddu, A.; Luca, L. D. Adv. Synth. Catal. 2016, 358, 154.
(a) Luca, L. D.; Giacomelli, G.; Porcheddu, A. Org. Lett. 2001, 3, 3041.
(b) Ye, J.; Wang, Y.; Chen, J.; Liang, X. Adv. Synth. Catal. 2004, 346, 691.
(c) Sniady, A.; Morreale, M. S.; Wheeler, K. A.; Dembinski, R. Eur. J. Org. Chem. 2008, 39, 3449.
(d) Jing, Y.; Daniliuc, C. G.; Studer, A. Org. Lett. 2014, 16, 4932.
(e) Raihan, M. J.; Rajawinslin, R. R.; Kavala, V.; Kuo, C.-W.; Kuo, T.-S.; He, C.-H.; Huang, H.-N.; Yao, C.-F. J. Org. Chem. 2013, 78, 8872.
(a) Morimoto, H.; Tsubogo, T.; Litvinas, N. D.; Hartwig, J. F. Angew. Chem.. Int. Ed. 2011, 50, 3793.
(b) Litvinas, N. D.; Fier, P. S.; Hartwig, J. F. Angew. Chem.. Int. Ed. 2012, 51, 536.
(c) Oishi, M.; Kondo, H.; Amii, H. Chem. Commun. 2009, 14, 1909.
(d) Weng, Z.; Lee, R.; Jia, W.; Yuan, Y.; Wang, W.; Feng, X.; Huang, K.-W. Organometallics 2011, 30, 3229.
(e) Shimizu, N.; Kondo, H.; Oishi, M.; Fujikawa, K.; Komoda, K.; Amii, H. Org. Synth. 2016, 93, 147.
Wei, Q.; Chen, J.-R.; Hu, X.-Q.; Yang, X.-C.; Lu, B.; Xiao, W.-J. Org. Lett. 2015, 17, 4464.
doi: 10.1021/acs.orglett.5b02118
For reviews of difluoromethylation: (a) Rong, J.; Ni, C.; Hu, J. Asian J. Org. Chem. 2017, 6, 139.
(b) Belhomme, M.-C.; Besset, T.; Poisson, T.; Pannecoucke, X. Chem.-Eur. J. 2015, 21, 12836.
(c) Yerien, D. E.; Barata-Vallejo, S.; Postigo, A. Chem.-Eur. J. 2017, 23, 14676.
(a) Fujiwara, Y.; Dixon, J. A.; O'Hara, F.; Funder, E. D.; Dixon, D. D.; Rodri-guez, R. A.; Baxter, R. D.; Herle, B.; Sach, N.; Collins, M. R.; Ishihara, Y.; Baran, P. S. Nature 2012, 492, 95.
(b) Fujiwara, Y.; Dixon, J. A.; Rodriguez, R. A.; Baxter, R. D.; Dixon, D. D.; Collins, M. R.; Blackmond, D. G.; Baran, P. S. J. Am. Chem. Soc. 2012, 134, 1494.
For selected examples, see: (a) Lin, Q.-Y.; Xu, X.-H.; Zhang, K.; Qing, F.-L. Angew. Chem.. Int. Ed. 2016, 55, 1479.
(b) He, Z.; Tan, P.; Ni, C.; Hu, J. Org. Lett. 2015, 17, 1838.
(c) Arai, Y.; Tomita, R.; Ando, G.; Koike, T.; Akita, M. Chem.-Eur. J. 2016, 22, 1262.
(d) Zou, G.; Wang, X. Org. Biomol. Chem. 2017, 15, 8748.
(e) Ran, Y.; Lin, Q.-Y.; Xu, X.-H.; Qing, F.-L. J. Org. Chem. 2016, 81, 7001.
(f) Tang, X.-J.; Dolbier, W. R. Angew. Chem.. Int. Ed. 2015, 54, 4246.
(g) Noto, N.; Koike, T.; Akita, M. J. Org. Chem. 2016, 81, 7064.
(h) Tang, X.; Zhang, Z.; Dolbier, W. R. Chem.-Eur. J. 2015, 21, 18961.
(i) Lin, Q.-Y.; Ran, Y.; Xu, X.-H.; Qing, F.-L. Org. Lett. 2016, 18, 2419.
Noto, N.; Koike, T.; Akita, M. Chem. Sci. 2017, 8, 6375.
doi: 10.1039/C7SC01703K
Xiong, P.; Xu, H.-H.; Song, J. S.; Xu, H.-C. J. Am. Chem. Soc. 2018, 140, 2460.
doi: 10.1021/jacs.8b00391
Zhu, M.; Fun, W. J.; Guo, W. B.; Tian, Y. F.; Wang, Z. Q.; Xu, C.; Ji, B. M. Eur. J. Org. Chem. 2019, 14, 1614.
Xiao, W.-J.; Hu, X.-Q.; Chen, J.; Chen, J.-R.; Yan, D.-M. Chem.-Eur. J. 2016, 22, 14141.
doi: 10.1002/chem.201602597
Tingbo Wang , Yao Luo , Bingyan Hu , Ruiyuan Liu , Jing Miao , Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082
Guojie Xu , Fang Yu , Yunxia Wang , Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Feng Han , Fuxian Wan , Ying Li , Congcong Zhang , Yuanhong Zhang , Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181
Jiaxun Wu , Mingde Li , Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098
Yue Zhao , Yanfei Li , Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001
Hong Lu , Yidie Zhai , Xingxing Cheng , Yujia Gao , Qing Wei , Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074
Yuanyi Lu , Jun Zhao , Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
Guimin ZHANG , Wenjuan MA , Wenqiang DING , Zhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
Yifeng TAN , Ping CAO , Kai MA , Jingtong LI , Yuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026