Citation: Zhang Zishu, Zhao Yulong, Geng Huiling. Chlorosulfonation of Acetanilide in a Dual-Temperature-Zone Silicon Carbide Microchannel Reactor and Synthesis of Sulfasalazine[J]. Chinese Journal of Organic Chemistry, ;2020, 40(8): 2387-2393. doi: 10.6023/cjoc202003053 shu

Chlorosulfonation of Acetanilide in a Dual-Temperature-Zone Silicon Carbide Microchannel Reactor and Synthesis of Sulfasalazine

  • Corresponding author: Geng Huiling, genghuiling@nwsuaf.edu.cn
  • Received Date: 23 March 2020
    Revised Date: 7 May 2020
    Available Online: 8 June 2020

    Fund Project: National Training Program of Innovation and Entrepreneurship for Undergraduates 2019-4Project supported by the National Natural Science Foundation of China (No. 31572038) and the National Training Program of Innovation and Entrepreneurship for Undergraduates (No. 2019-4)National Natural Science Foundation of China 31572038

Figures(5)

  • Chlorosulfonation of acetanilide was accomplished within 10 min in up to 96% yield via a highly thermoconductive and corrosion-resistant dual-temperature-zone silicon carbide microchannel reactor. The yield of pilot production was up to 92%. In the first stage, low reaction temperature (40℃) was employed to effect a high sulfonation selectivity at the para position of acetanilide. In the second stage, a higher reaction temperature (100℃) led to a faster formation of chlorosulfonation product. To illustrate the application of this reaction, sulfasalazine with antimicrobial and anti-inflammatory activities was synthesized in total yield of 75% via chlorosulfonation, sulfamide formation, hydrolysis under base conditions, diazotization and coupling with salicylic acid. The two-step continuous reaction helped to solve the problems in batch reactor, such as low temperature leading to slow reaction and high temperature resulting byproducts and/or temperature runaway, the safety concern aroused by heat accumulation, and the polution caused by the use of large excess of chlorosulfonic acid in batch production. The above research provides technical support for the large-scale industrial production of p-acetylaminobenzenesulfonyl chloride and its sulfonamides.
  • 加载中
    1. [1]

      (a) Ludwig, M.; Stverka, P. Collect. Czech. Chem. Commun. 1996, 61, 1205.
      (b) Patel, T. S.; Bhatt, J. D.; Vanparia, S. F.; Patel, U. H.; Dixit, R. B.; Chudasama, C. J.; Patel, B. D.; Dixit, B. C. Bioorg. Med. Chem. 2017, 25, 6635.
      (c) Shi, L.; Chen, L.; Chen, R.; Chen, L. J. Label. Compd. Radiopharm. 2010, 53, 147.
      (d) Bialk, H. M.; Hedman, C.; Castillo, A.; Pedersen, J. A. Environ. Sci. Technol. 2007, 41, 3593.
      (e) Zhang, H.-Z.; He, S.-C.; Peng, Y.-J.; Zhang, H.-J.; Gopala, L.; Tangadanchu, V. K. R.; Gan, L.-L.; Zhou, C.-H. Eur. J. Med. Chem. 2017, 136, 165.
      (f) Zhang, H. Z.; Jeyakkumar, P.; Kumar, K. V.; Zhou, C. H. New J. Chem. 2015, 39 5776.

    2. [2]

      (a) Hu, Z. Y.; Du, Z. C.; Li, X. K.; Lu, J. X.; Li, J. CN 104496866, 2015.
      (b) Cai, H. X.; Yan, L. L.; Chen, D. H.; Yang, S. B.; Yang, P. CN 108640862, 2018.
      (c) Yan, L. L.; Cai, H. X.; Wei, Y. J.; Wang, Y. Q.; Zhang, G. X. CN 108558712, 2018.
      (d) Ding, T. F.; Chen, Z. X.; Gao, H. CN 102320997, 2012.
      (e) Ji, J. M.; Li, D.; Du, W. G. CN 105237446, 2015.

    3. [3]

      (a) Lenstra, D. C.; Rutjes, F. P. J. T. In Sustainable Flow Chemistry, Ed.: Vaccaro, L., WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2017, pp. 103~134.
      (b) Adamo, A.; Beingessner, R. L.; Behnam, M.; Chen, J.; Jamison, T. F.; Jensen, K. F.; Monbaliu, J.-C. M.; Myerson, A. S.; Revalor, E. M.; Snead, D. R. Science 2016, 352, 61.
      (c) Plutschack, M. B.; Pieber, B.; Gilmore, K.; Seeberger, P. H. Chem. Rev. 2017, 117, 11796.
      (d) Brzozowski, M.; O'Brien, M.; Ley, S. V.; Polyzos, A. Acc. Chem. Res. 2015, 48, 349.
      (e) Mason, B. P.; Price, K. E.; Steinbacher, J. L.; Bogdan, A. R.; McQuade, D. T. Chem. Rev. 2007, 107, 2300.
      (f) Beatty, J. W.; Stephenson, C. R. J. J. Am. Chem. Soc. 2014, 136, 10270.
      (g) Ren, K.; Zhou, J.; Wu, H. Acc. Chem. Res. 2013, 46, 2396.
      (h) Han, X.; Poliakoff, M. Chem. Soc. Rev. 2012, 41, 1428.
      (i) Hartman, R. L.; McMullen, J. P.; Jensen, K. F. Angew. Chem., Int. Ed. 2011, 50, 7502.
      (h) Ma, X. P.; Li, Z. M.; Wang, Q. R. Chin. Chem. Lett. 2011, 22, 167.
      (i) Tu, Q.; Pang, L.; Zhang, Y.; Yuan, M.; Wang, J.; Wang, D.; Liu, W.; Wang, J. Chin. J. Chem. 2013, 31, 304.

    4. [4]

      (a) Yao, C.; Zhao, Y.; Ye, C.; Dang, M.; Dong, Z.; Chen, G. Chem. Eng. Sci. 2013, 95, 246.
      (b) Liu, Y.; Yue, J.; Xu, C.; Zhao, S.; Yao, C.; Chen, G. AIChE J. 2020, 66, e16805.
      (c) Zhou, F.; Zhang, B.; Liu, H.; Wen, Z.; Wang, K.; Chen, G. Org. Process. Res. Dev. 2018, 22, 504.
      (d) Han, C.; Hu, Y.; Wang, K.; Luo, G. Particuology 2020, 50, 173.
      (e) Deng, J.; Zhang, J.; Wang, K.; Luo, G. Chin. J. Chem. 2019, 37, 161.
      (f) Liu, G.; Wang, K.; Lu, Y.; Luo, G. Chem. Eng. J. 2014, 258, 34.
      (g) Li, G. X.; Shang, M. J.; Song, Y.; Su, Y. H. AIChE J. 2018, 64, 1106.
      (h) Su, Y. H.; Song, Y.; Xiang, L. Top. Curr. Chem. 2018, 376, 44.
      (i) Song, Y.; Song, J.; Shang, M.; Xu, W.; Liu, S.; Wang, B.; Lu, Q.; Su, Y. Chem. Eng. J. 2018, 353, 769.
      (j) Zhang, P.; Yao, C.; Ma, H.; Jin, N.; Zhang, X.; Lü, H.; Zhao, Y. Chem. Eng. Sci. 2018, 182, 17.

    5. [5]

      (a) Kong, X. W.; Teng, Y. D.; Zhang, Z. G.; Zhang, T. Z. J. Shenyang Inst. Chem. Tech. 1998, (2), 117(in Chinese).
      (b) Li, L.; Zhao, Y. M. Tianjin Chem. Ind. 2004, 18, 27(in Chinese).

    6. [6]

      (a) Akwi, F. M.; Watts, P. Beilstein J. Org. Chem. 2016, 12, 1987.
      (b) Guha, D. J. Indian Chem. Soc. 1946, 23, 278.
      (c) Seydel, J. K.; Trettin, D.; Cordes, H. P. J. Med. Chem. 1980, 23, 607.
      (d) Bensaude, O.; Dreyfus, M.; Dodin, G.; Dubois, J. E. J. Am. Chem. Soc. 1977, 99, 4438.
      (e) Bialk, H. M.; Hedman, C.; Castillo, A.; Pedersen, J. A. Environ. Sci. Technol. 2007, 41, 3593.
      (f) Velraj, G.; Soundharam, S. J. Mol. Struct. 2014, 1074, 475.
      (g) Ol'khovich, M. V.; Sharapova, A. V.; Blokhina, S. V.; Perlovich, G. L. J. Chem. Eng. Data 2017, 62, 123.
      (h) Abd El-Wahed, M. G.; Refat, M. S.; El-Megharbel, S. M. Chem. Pharm. Bull. 2008, 56, 1585.

  • 加载中
    1. [1]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    2. [2]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    3. [3]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    4. [4]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    5. [5]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    6. [6]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    7. [7]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    8. [8]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    9. [9]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    10. [10]

      Haifeng Liu Yong Xiao Teng Yuan Bimin Lin Yizhen Wang Hui Zeng . Exploration of Safety Facility Configuration in University Chemical Depot. University Chemistry, 2024, 39(10): 182-188. doi: 10.3866/PKU.DXHX202401036

    11. [11]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    12. [12]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

    13. [13]

      Chuanli Qin Naiying Fan Yan Wang Bin Wang Guo Zhang Bing Zheng Yichun Qu Zhiyao Sun Guanghui An . Teaching Design and Exploration of Ideological and Political Education in Chemical Experiment Safety Courses: a Case Study of the “Chemical Experiment Safety” Course at Heilongjiang University. University Chemistry, 2024, 39(2): 234-241. doi: 10.3866/PKU.DXHX202308008

    14. [14]

      Naiying Fan Chuanli Qin Guo Zhang Bin Wang Yan Wang Bing Zheng Yichun Qu Zhiyao Sun Guanghui An . Case Design of Course Ideological and Political Education in Chemical Experiment Safety: the Safe Use of Common Laboratory Instruments and Glassware. University Chemistry, 2024, 39(2): 242-247. doi: 10.3866/PKU.DXHX202309061

    15. [15]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    16. [16]

      Fang Li Yang Liu Jie Han Xiaohang Qiu . Exploration of Safety Management and Practice in University Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 48-53. doi: 10.3866/PKU.DXHX202309009

    17. [17]

      Jin Yan Chengxia Tong Yajie Li Yue Gu Xuejian Qu Shigang Wei Wanchun Zhu Yupeng Guo . Construction of a “Dual Support, Triple Integration” Chemical Safety Practical Education System. University Chemistry, 2024, 39(7): 69-75. doi: 10.12461/PKU.DXHX202405008

    18. [18]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    19. [19]

      Dongxue Han Huiliang Sun Li Niu . Virtual Reality Technology for Safe and Green University Chemistry Experimental Education. University Chemistry, 2024, 39(8): 191-196. doi: 10.3866/PKU.DXHX202312055

    20. [20]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

Metrics
  • PDF Downloads(21)
  • Abstract views(2209)
  • HTML views(555)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return