Citation: Qin Chengyuan, Liu Wei, Nie Yong, Gao Ying, Miao Jinling, Li Tianrui, Jiang Xuchuan. Advances in Organofluorine Compounds with Aggregation-Induced Emission[J]. Chinese Journal of Organic Chemistry, ;2020, 40(8): 2232-2253. doi: 10.6023/cjoc202003051 shu

Advances in Organofluorine Compounds with Aggregation-Induced Emission

  • Corresponding author: Nie Yong, chm_niey@ujn.edu.cn Jiang Xuchuan, ism_jiangxc@ujn.edu.cn
  • Received Date: 22 March 2020
    Revised Date: 9 May 2020
    Available Online: 25 May 2020

    Fund Project: Project supported by the Natural Science Foundation of Shandong Province (No. ZR2017LB008), the Science and Technology Program of University of Jinan (No. XKY1906) and the Shandong Shenna Smart Advanced Materials Co., Ltdthe Natural Science Foundation of Shandong Province ZR2017LB008the Science and Technology Program of University of Jinan XKY1906

Figures(6)

  • Aggregation-induced emission (AIE) compounds have attracted much attention due to their important potential applications in biological and chemical sensing, luminescent materials, display and other areas. As an important class of functional molecules, organofluorine compounds have been widely studied in areas such as organic chemitry and materials chemistry. The organofluorine compounds with AIE properties are summarized and classified. The currently reported AIE organofluorine compounds include the fluorinated tetraphenylethene (TPE) derivatives, 9, 10-distyrylanthracene (DSA) derivatives, cyanostilbene derivatives, distyrylbenzene derivatives, fluorinated polymers, carborane clusters, room temperature phosphorescent molecules, and some other fluorinated structures. With fluorine atoms in the structures, the stability of the resulting AIE compounds is generally improved, and fluorine atoms often participate in the intermolecular interactions leading to significant changes in the structure of the aggregation state, and hence changes in luminescence properties, for example, emission enhancement, bathochromism or hypsochromism of the emissions, improvement of the emission quantum yield and lifetime. The prospects of the future study are also discussed.
  • 加载中
    1. [1]

      Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Tang, B. Z.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D. Chem. Commun. 2001, 1740.  doi: 10.1039/B105159H

    2. [2]

      Mei, J.; Hong, Y.; Lam, J. W.; Qin, A.; Tang, Y.; Tang, B. Z. Adv. Mater. 2014, 26, 5429.  doi: 10.1002/adma.201401356

    3. [3]

      Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W.; Tang, B. Z. Chem. Rev. 2015, 115, 11718.  doi: 10.1021/acs.chemrev.5b00263

    4. [4]

      Hong, Y.; Lam, J. W.; Tang, B. Z. Chem. Commun. 2009, 4332.

    5. [5]

      Luo, J.; Song, K.; Gu, F. L.; Miao, Q. Chem. Sci. 2011, 2, 2029.  doi: 10.1039/c1sc00340b

    6. [6]

      Leung, N. L.; Xie, N.; Yuan, W.; Liu, Y.; Wu, Q.; Peng, Q.; Miao, Q.; Lam, J. W.; Tang, B. Z. Chem.-Eur. J. 2014, 20, 15349.  doi: 10.1002/chem.201403811

    7. [7]

      Yao, L.; Zhang, S.; Wang, R.; Li, W.; Shen, F.; Yang, B.; Ma, Y. Angew. Chem., Int. Ed. 2014, 53, 2119.  doi: 10.1002/anie.201308486

    8. [8]

      Liu, J.; Meng, Q.; Zhang, X.; Lu, X.; He, P.; Jiang, L.; Dong, H.; Hu, W. Chem. Commun. 2013, 49, 1199.  doi: 10.1039/c2cc38817k

    9. [9]

      Babudri, F.; Farinola, G. M.; Naso, F.; Ragni, R. Chem. Commun. 2007, 1003.

    10. [10]

      Zhang, Q.; Kelly, M. A.; Bauer, N.; You, W. Acc. Chem. Res. 2017, 50, 2401.  doi: 10.1021/acs.accounts.7b00326

    11. [11]

      Farinola, G. M.; Babudri, F.; Cardone, A.; Hassan Omar, O.; Martinelli, C.; Naso, F.; Pinto, V.; Ragni, R. Adv. Sci. Technol. 2010, 75, 108.  doi: 10.4028/www.scientific.net/AST.75.108

    12. [12]

      MilianMedina, B.; Gierschner, J. J. Phys. Chem. Lett. 2017, 8, 91.  doi: 10.1021/acs.jpclett.6b02495

    13. [13]

      Chen, M.; Sun, J.; Qin, A.; Tang, B. Z. Chin. Sci. Bull. 2016, 61, 304(in Chinese).

    14. [14]

      Shen, P.; Zhuang, Z.; Zhao, Z.; Tang, B. Z. J. Mater. Chem. C 2018, 6, 11835.  doi: 10.1039/C8TC02956C

    15. [15]

      Guo, L. X.; Xing, Y.; Wang, M.; Sun, Y.; Zhang, X.; Lin, B. P.; Yang, H. J. Mater. Chem. C 2019, 7, 4828.  doi: 10.1039/C9TC00448C

    16. [16]

      Fang, G.; Liu, J.; Zhang, C.; Liu, B. ACS Appl. Mater. Interfaces 2018, 10, 11546.  doi: 10.1021/acsami.8b01960

    17. [17]

      Wang, N.; Zhang, J.; Xu, X.; Feng, S. Dalton Trans. 2020, 49, 1883.  doi: 10.1039/C9DT03985F

    18. [18]

      Shimizu, S.; Murayama, A.; Haruyama, T.; Iino, T.; Mori, S.; Furuta, H.; Kobayashi, N. Chem.-Eur. J. 2015, 21, 12996.  doi: 10.1002/chem.201501464

    19. [19]

      Wang, X.; Wu, Y.; Liu, Q.; Li, Z.; Yan, H.; Ji, C.; Duan, J.; Liu, Z. Chem. Commun. 2015, 51, 784.  doi: 10.1039/C4CC07451C

    20. [20]

      Yamaguchi, M.; Ito, S.; Hirose, A.; Tanaka, K.; Chujo, Y. Mater. Chem. Front. 2017, 1, 1573.  doi: 10.1039/C7QM00076F

    21. [21]

      Ravotto, L.; Ceroni, P. Coord. Chem. Rev. 2017, 346, 62.  doi: 10.1016/j.ccr.2017.01.006

    22. [22]

      Alam, P.; Climent, C.; Alemany, P.; Laskar, I. J. Photochem. Photobiol., C 2019, 41, 100317.  doi: 10.1016/j.jphotochemrev.2019.100317

    23. [23]

      Dong, W.; Fei, T.; PalmaCando, A.; Scherf, U. Polym. Chem. 2014, 5, 4048.  doi: 10.1039/c4py00251b

    24. [24]

      Zhang, J.; Yang, Q.; Zhu, Y.; Liu, H.; Chi, Z.; Su, C. Dalton Trans. 2014, 43, 15785.  doi: 10.1039/C4DT01808G

    25. [25]

      Obora, Y.; Moriya, H.; Tokunaga, M.; Tsuji, Y. Chem. Commun. 2003, 2820.

    26. [26]

      Mills, N. S.; Tirla, C.; Benish, M. A.; Rakowitz, A. J.; Bebell, L. M.; Hurd, C. M. M.; Bria, A. L. M. J. Org. Chem. 2005, 70, 10709.  doi: 10.1021/jo051599u

    27. [27]

      Xue, F.; Zhao, J.; Hor, T. S. A.; Hayashi, T. J. Am. Chem. Soc. 2015, 137, 3189.  doi: 10.1021/ja513166w

    28. [28]

      Lin, Y.; Chen, G.; Zhao, L.; Yuan, W. Z.; Zhang, Y.; Tang, B. Z. J. Mater. Chem. C 2015, 3, 112.  doi: 10.1039/C4TC02161D

    29. [29]

      Yang, Z.; Qin, W.; Leung, N. L. C.; Arseneault, M.; Lam, J. W. Y.; Liang, G.; Sung, H. H. Y.; Williams, I. D.; Tang, B. Z. J. Mater. Chem. C 2016, 4, 99.  doi: 10.1039/C5TC02924D

    30. [30]

      Tu, J.; Liu, F.; Wang, J.; Li, X.; Gong, Y.; Fan. Y.; Han, M.; Li, Q.; Li, Z. ChemPhotoChem 2019, 3, 133.  doi: 10.1002/cptc.201800227

    31. [31]

      Kokado, K.; Machida, T.; Iwasa, T.; Taketsugu, T.; Sada, K. J. Phys. Chem. C 2018, 122, 245.  doi: 10.1021/acs.jpcc.7b11248

    32. [32]

      Wu, Y.; Yan, C.; Li, D.; Yuan, C.; Sun, J.; Zhou, S.; Zhang, H.; Shao, X. Chem.-Asian J. 2019, 14, 1860.  doi: 10.1002/asia.201801603

    33. [33]

      Zhang, H.; Nie, Y.; Miao, J.; Zhang, D.; Li, Y.; Liu, G.; Sun, G.; Jiang, X. J. Mater. Chem. C 2019, 7, 3306.  doi: 10.1039/C9TC00511K

    34. [34]

      Xu, P.; Qiu, Q.; Ye, X.; Wei, M.; Xi, W.; Feng, H.; Qian, Z. Chem. Commun. 2019, 55, 14938.  doi: 10.1039/C9CC07045A

    35. [35]

      Xu, S.; Bai, X.; Ma, J.; Xu, M.; Hu, G.; James, T. D.; Wang, L. Anal. Chem. 2016, 88, 7853.  doi: 10.1021/acs.analchem.6b02032

    36. [36]

      Wu, H.; Jiang, Y.; Ding, Y.; Meng, Y.; Zeng, Z.; Cabanetos, C.; Zhou, G.; Gao, J.; Liu, J.; Roncali, J. Dyes Pigm. 2017, 146, 323.  doi: 10.1016/j.dyepig.2017.07.026

    37. [37]

      Cui, Y.; Yin, Y.; Cao, H.; Zhang, M.; Shan, G.; Sun, H.; Wu, Y.; Su, Z.; Xie, W. Dyes Pigm. 2015, 119, 62.  doi: 10.1016/j.dyepig.2015.03.024

    38. [38]

      Jadhav, T.; Choi, J. M.; Dhokale, B.; Mobin, S. M.; Lee, J. Y.; Misra, R. J. Phys. Chem. C 2016, 120, 18487.  doi: 10.1021/acs.jpcc.6b06277

    39. [39]

      Jadhav, T.; Dhokale, B.; Patil, Y.; Mobin, S.; Misra, R. J. Phys. Chem. C 2016, 120, 24030.  doi: 10.1021/acs.jpcc.6b09015

    40. [40]

      Weng, S.; Si, Z.; Zhou, Y.; Zuo, Q.; Shi, L.; Duan, Q. J. Lumin. 2018, 195, 14.  doi: 10.1016/j.jlumin.2017.11.005

    41. [41]

      Zhao, F.; Chen, Z.; Liu, G.; Fan, C.; Pu, S. Tetrahedron Lett. 2018, 59, 836.  doi: 10.1016/j.tetlet.2018.01.051

    42. [42]

      Zhu, X.; Wang, D.; Huang, H.; Zhang, X.; Wang, S.; Liu, R.; Zhu, H. Dyes Pigm. 2019, 171, 107657.  doi: 10.1016/j.dyepig.2019.107657

    43. [43]

      Li, C.; Gong, W.; Hu, Z.; Aldred, M.; Zhang, G.; Chen, T.; Huang, Z.; Zhu, M. RSC Adv. 2013, 3, 8967  doi: 10.1039/c3ra40674a

    44. [44]

      Li, S.; Shang, Y.; Wang, L.; Kwok, R. T. K.; Tang, B. Z. J. Mater. Chem. C 2016, 4, 5363.  doi: 10.1039/C6TC00803H

    45. [45]

      Zhao, F.; Chen, Z.; Fan, C.; Liu, G.; Pu, S. Dyes Pigm. 2019, 164, 390.  doi: 10.1016/j.dyepig.2019.01.057

    46. [46]

      Yu, C.; Hsu, C.; Weng, H. RSC Adv. 2018, 8, 12619.  doi: 10.1039/C8RA01448E

    47. [47]

      Lusting, W.; Wang, F.; Teat, S.; Hu, Z.; Gong, Q.; Li, J. Inorg. Chem. 2016, 55, 7250.  doi: 10.1021/acs.inorgchem.6b00897

    48. [48]

      Wang, F.; Liu, W.; Teat, S.; Xu, F.; Wang, H.; Wang, X.; An, L.; Li, J. Chem. Commun. 2016, 52, 10249.  doi: 10.1039/C6CC05290H

    49. [49]

      Lusting, W.; Teat, S.; Li, J. J. Mater. Chem. C 2019, 7, 14739.  doi: 10.1039/C9TC05216J

    50. [50]

      Zhang, Z.; Lieu, T.; Wu, C.; Wang, X.; Wu, J.; Daugulis, O.; Miljanic, O. Chem. Commun. 2019, 55, 9387.  doi: 10.1039/C9CC03932E

    51. [51]

      Ma, S.; Ma, L.; Han, W.; Jiang, S.; Xu, B.; Tian, W. Sci. Sin. Chim. 2018, 48, 683(in Chinese).  doi: 10.1360/N032018-00009

    52. [52]

      Xu, B.; Tian, W. Aggregation-Induced Emission: Materials and Applications Volume 1, In ACS Symposium Series, Vol. 1226, Eds.: Fujiki, M.; Liu, B.; Tang, B. Z. American Chemical Society, Washington, DC, 2016, p. 113.

    53. [53]

      Liu, W.; Wang, Y.; Sun, M.; Zhang, D.; Zheng, M.; Yang, W. Chem. Commun. 2013, 49, 6042.  doi: 10.1039/c3cc42636j

    54. [54]

      Liu, W.; Wang, Y.; Bu, L.; Li, J.; Sun, M.; Zhang, D.; Zheng, M.; Yang, C.; Xue, S.; Yang, W. J. Lumin. 2013, 143, 50.  doi: 10.1016/j.jlumin.2013.04.019

    55. [55]

      Dong, Y.; Xu, B.; Zhang, J.; Lu, H.; Wen, S.; Chen, F.; He, J.; Li, B.; Ye, L.; Tian, W. CrystEngComm 2012, 14, 6593.  doi: 10.1039/c2ce25276g

    56. [56]

      Wu, D.; Wang, M.; Luo, Y.; Zhang, Y.; Ma, Y.; Sun, B. New J. Chem. 2017, 41, 4220.  doi: 10.1039/C6NJ03884K

    57. [57]

      Fang, W.; Zhang, G.; Chen, J.; Kong, L.; Yang, L.; Bi, H.; Yang, J. Sens. Actuators, B 2016, 229, 338.  doi: 10.1016/j.snb.2016.01.130

    58. [58]

      Martínez-Abadía, M.; Robles-Hernández, B.; Villacampa, B.; de la Fuente, M. R.; Giménez, R.; Ros, M. B. J. Mater. Chem. C 2015, 3, 3038.  doi: 10.1039/C5TC00201J

    59. [59]

      Seo, J.; Chung, J. W.; Cho, I.; Park, S. Y. Soft Matter 2012, 8, 7617.  doi: 10.1039/c2sm25551k

    60. [60]

      An, B.; Gierschner, J.; Park, S. Y. Acc. Chem. Res. 2012, 45, 544.  doi: 10.1021/ar2001952

    61. [61]

      Yeh, H.; Wu, W.; Wen, Y.; Wang, J.; Chen, C. J. Org. Chem. 2004, 69, 6455.  doi: 10.1021/jo049512c

    62. [62]

      Dou, C.; Han, L.; Zhao, S.; Zhang, H.; Wang, Y. J. Phys. Chem. Lett. 2011, 2, 666.  doi: 10.1021/jz200140c

    63. [63]

      Lim, S.; An, B.; Jung, S.; Chung, M.; Park, S. Angew. Chem., Int. Ed. 2004, 43, 6346.  doi: 10.1002/anie.200461172

    64. [64]

      An, B.; Gihm, S.; Chung, J.; Park, C.; Kwon, S.; Park, S. J. Am. Chem. Soc. 2009, 131, 3950.  doi: 10.1021/ja806162h

    65. [65]

      Shin, S.; Gihm, S.; Park, C.; Kim, S.; Park, S. Chem. Mater. 2013, 25, 3288.  doi: 10.1021/cm400988a

    66. [66]

      Ma, C.; Zhang, X.; Yang, Y.; Ma, Z.; Yang, L.; Wu, Y.; Liu, H.; Jia, X.; Wei, Y. Dyes Pigm. 2016, 129, 141.  doi: 10.1016/j.dyepig.2016.02.028

    67. [67]

      Ma, C.; Zhang, X.; Yang, L.; Li, Y.; Liu, H.; Yang, Y.; Xie, G.; Ou, Y.; Wei, Y. Dyes Pigm. 2017, 136, 85.  doi: 10.1016/j.dyepig.2016.08.031

    68. [68]

      Li, W.; Wang, Y.; Zhang, Y.; Gao, Y.; Dong, Y.; Zhang, X.; Song, Q.; Yang, B.; Ma, Y.; Zhang, C. J. Mater. Chem. C 2017, 5, 8097.  doi: 10.1039/C7TC02474F

    69. [69]

      Jyothi, M.; Annadhasan, M.; Vuppu, V.; Chandrasekar, R. Soft Matter 2020, 16, 2664.  doi: 10.1039/D0SM00108B

    70. [70]

      Javed, I.; Zhou, T.; Muhammd, F.; Guo, J.; Zhang, H.; Wang, Y. Langmuir 2012, 28, 1439.  doi: 10.1021/la202755z

    71. [71]

      Liu, J.; Li, W.; Liu, M.; Dong, Y.; Dai, Yu.; Song, Q.; Wang, J.; Zhang, C. Phys. Chem. Chem. Phys. 2018, 20, 28279  doi: 10.1039/C8CP05581E

    72. [72]

      Wang, Y.; Liu, J.; Yuan, W.; Wang, Y.; Zhou, H.; Liu, X.; Cao, J.; Zhang, C. Dyes Pigm. 2019, 167, 135.  doi: 10.1016/j.dyepig.2019.04.015

    73. [73]

      Kwon, M. S.; Gierschner, J.; Seo, J.; Park, S. Y. J. Mater. Chem. C 2014, 2, 2552.  doi: 10.1039/c3tc31938e

    74. [74]

      Kim, H. J.; Whang, D. R.; Gierschner, J.; Lee, C. H.; Park, S. Y. Angew. Chem., Int. Ed. 2015, 54, 4330.  doi: 10.1002/anie.201411568

    75. [75]

      Xu, D.; Hao, J.; Gao, H.; Wang, Y.; Wang, Y.; Liu, X.; Han, A.; Zhang, C. Dyes Pigm. 2018, 150, 293.  doi: 10.1016/j.dyepig.2017.12.031

    76. [76]

      Wang, Y.; Xu, D.; Gao, H.; Wang, Y.; Liu, X.; Han, A.; Zhang, C.; Zang, L. J. Phys. Chem. C 2018, 122, 2297.

    77. [77]

      Cheng, D.; Xu, D.; Wang, Y.; Zhou, H.; Zhou, Z.; Liu, X.; Han, A.; Zhang, C. Dyes Pigm. 2020, 173, 107937.  doi: 10.1016/j.dyepig.2019.107937

    78. [78]

      Wang, Y.; Cheng, D.; Xu, D.; Zhou, H.; Liu, X.; Wang, Y.; Han, A.; Zhang, C. Dyes Pigm. 2019, 171, 107689.  doi: 10.1016/j.dyepig.2019.107689

    79. [79]

      Cheng, D.; Xu, D.; Wang, Y.; Zhou, H.; Zhang, Y.; Liu, X.; Han, A.; Zhang, C. Dyes Pigm. 2020, 173, 107934.  doi: 10.1016/j.dyepig.2019.107934

    80. [80]

      Zhang, Y.; Zhao, X.; Li, Y.; Wang, X.; Wang, Q.; Lu, H., Zhu, L. Dyes Pigm. 2019, 165, 53.  doi: 10.1016/j.dyepig.2019.02.019

    81. [81]

      Zhang, Y. X.; Fu, H.; Liu, D. E.; An, J. X.; Gao, H. J. Nanobiotechnol. 2019, 17, 104.  doi: 10.1186/s12951-019-0523-x

    82. [82]

      Song, Y. K.; Lee, H.; Lee, C. K.; Choi, M. H.; Kim, C. J.; Lee, S.; Noh, S. M.; Park, Y. Appl. Surf. Sci. 2020, 511, 145556.  doi: 10.1016/j.apsusc.2020.145556

    83. [83]

      Wang, F.; Li, X.; Wang, S.; Li, C.; Dong, H.; Ma, X.; Kim, S.; Cao, D. Chin. Chem. Lett. 2016, 27, 1592.  doi: 10.1016/j.cclet.2016.04.020

    84. [84]

      Zhang, F.; Di, Y.; Li, Y.; Qi, Q.; Qian, J.; Fu, X.; Xu, B.; Tian, W. Dyes Pigm. 2017, 142, 491.  doi: 10.1016/j.dyepig.2017.04.004

    85. [85]

      Wang, Y.; Cheng, D.; Zhou, H.; Liu, J.; Liu, X.; Cao, J.; Han, A.; Zhang, C. Dyes Pigm. 2019, 171, 107739.  doi: 10.1016/j.dyepig.2019.107739

    86. [86]

      Wang, Y.; Cheng, D.; Zhou, H.; Liu, J.; Liu, X.; Wang, Y.; Han, A.; Zhang, C. Dyes Pigm. 2019, 170, 107606.  doi: 10.1016/j.dyepig.2019.107606

    87. [87]

      Xie, Z.; Yang, B.; Xie, W.; Liu, L.; Shen, F.; Wang, H.; Yang, X.; Wang, Z.; Li, Y.; Hanif, M.; Yang, G.; Ling, Ye.; Ma, Y. J. Phys. Chem. B 2006, 110, 20993.  doi: 10.1021/jp064069q

    88. [88]

      Shi, Z.; Davies, J.; Jang, S.; Kaminsky, W.; Jen, A. Chem. Commun. 2012, 48, 7880.  doi: 10.1039/c2cc32380j

    89. [89]

      Freudenberg, J.; Rominger, F.; Bunz, U. Chem.-Eur. J. 2015, 21, 16749.  doi: 10.1002/chem.201502877

    90. [90]

      Freudenberg, J.; Rominger, F.; Bunz, U. Chem.-Eur. J. 2016, 22, 8740.  doi: 10.1002/chem.201601069

    91. [91]

      Lu, H.; Su, F.; Mei, Q.; Tian, Y.; Tian, W.; Johnson, R. H.; Meldrum, D. R. J. Mater. Chem. 2012, 22, 9890.  doi: 10.1039/c2jm30258f

    92. [92]

      Lim, S.; An, B.; Park, S. Y. Macromolecules 2005, 38, 6236.  doi: 10.1021/ma0504163

    93. [93]

      Sinawang, G.; Wang, J.; Wu, B.; Wang, X.; He, Y. RSC Adv. 2016, 6, 12647.  doi: 10.1039/C5RA27014F

    94. [94]

      Zhao, Y.; Zhu, W.; Ren, L.; Zhang, K. Polym. Chem. 2016, 7, 5386.  doi: 10.1039/C6PY01009A

    95. [95]

      Wang, Q.; Chen, M.; Yao, B.; Wang, J.; Mei, J.; Sun, J. Z.; Qin, A.; Tang, B. Z. Macromol. Rapid Commun. 2013, 34, 796.  doi: 10.1002/marc.201200838

    96. [96]

      Wu, Y.; He, B.; Quan, C.; Zheng, C.; Deng, H.; Hu, R.; Zhao, Z.; Huang, F.; Qin, A.; Tang, B. Z. Macromol. Rapid Commun. 2017, 38, 1700070.  doi: 10.1002/marc.201700070

    97. [97]

      Li, W.; Che, C.; Pang, J.; Cao, Z.; Jiao, Y.; Xu, J.; Ren, Y.; Li, X. Langmuir 2018, 34, 5334.  doi: 10.1021/acs.langmuir.8b00791

    98. [98]

      Li, W. T.; Zhang, H.; Li, X.; Yu, H.; Che, S. L.; Luan, S.; Ren, Y.; Li, S.; Liu, P.; Yu, X.; Li, X. ACS Appl. Mater. Interfaces 2020, 12, 7617.  doi: 10.1021/acsami.9b22206

    99. [99]

      Mukherjee, S.; Thilagar, P. J. Mater. Chem. C 2016, 4, 2647.  doi: 10.1039/C5TC02406D

    100. [100]

      Mukherjee, S.; Thilagar, P. Chem. Commun. 2016, 52, 1070.  doi: 10.1039/C5CC08213G

    101. [101]

      Nunez, R.; Romero, I.; Teixidor, F.; Vinas, C. Chem. Soc. Rev. 2016, 45, 5147.  doi: 10.1039/C6CS00159A

    102. [102]

      Nunez, R.; Tarres, M.; FerrerUgalde, A.; de Biani, F. F.; Teixidor, F. Chem. Rev. 2016, 116, 14307.  doi: 10.1021/acs.chemrev.6b00198

    103. [103]

      Tanaka, K.; Chujo, Y. In Principles and Applications of Aggregation-Induced Emission, Vol. 1, Eds.: Tang, B. Z.; Tang, Y., Springer Nature Switzerland AG, 2019, p. 27.

    104. [104]

      Nie, Y.; Zhang, H.; Miao, J.; Zhao, X.; Li, Y.; Sun, G. J. Organomet. Chem. 2018, 865, 200.  doi: 10.1016/j.jorganchem.2018.03.034

    105. [105]

      Kokado, K.; Chujo, Y. J. Org. Chem. 2011, 76, 316.  doi: 10.1021/jo101999b

    106. [106]

      Bae, H. J.; Kim, H.; Lee, K. M.; Kim, T.; Lee, Y. S.; Do, Y.; Lee, M. H. Dalton Trans. 2014, 43, 4978.  doi: 10.1039/c3dt52465e

    107. [107]

      Tu, D.; Pakkin, L.; Guo, S.; Lu, C.; Qiang, Z.; Yan, H. Angew. Chem., Int. Ed. 2017, 56, 11370.  doi: 10.1002/anie.201703862

    108. [108]

      Chen, Y.; Guo, J.; Wu, X.; Jia, D.; Tong, F. Dyes Pigm. 2018, 148, 180.  doi: 10.1016/j.dyepig.2017.09.011

    109. [109]

      Wei, X.; Zhu, M.; Cheng, Z.; Lee, M.; Yan, H.; Lu, C.; Xu, J. Angew. Chem., Int. Ed. 2019, 58, 3162.  doi: 10.1002/anie.201900283

    110. [110]

      Chen, L.; Wang, Y. H.; He, B.; Nie, H.; Hu, R.; Huang, F.; Qin, A.; Zhou, X. S.; Zhao, Z.; Tang, B. Z. Angew. Chem., Int. Ed. 2015, 54, 4231.  doi: 10.1002/anie.201411909

    111. [111]

      Zhan G.; Liu, Z.; Bian, Z.; Huang, C. Front. Chem. 2019, 7, 305.  doi: 10.3389/fchem.2019.00305

    112. [112]

      Data, P.; Takeda, Y. Chem.-Asian J. 2019, 14, 1613.  doi: 10.1002/asia.201801791

    113. [113]

      Yuan, W. Z.; Shen, X. Y.; Zhao, H.; Tang, B. Z. J. Phys. Chem. C 2010, 114, 6090.  doi: 10.1021/jp909388y

    114. [114]

      Gong, Y.; Tan, Y.; Li, H.; Zhang, Y.; Yuan, W.; Zhang, Y.; Sun, J.; Tang, B. Z. Sci. China:Chem. 2013, 56, 1183.  doi: 10.1007/s11426-013-4930-9

    115. [115]

      Gong, Y.; Zhao, L.; Peng, Q.; Fan, D.; Yuan, W. Z.; Zhang, Y.; Tang, B. Z. Chem. Sci. 2015, 6, 4438.  doi: 10.1039/C5SC00253B

    116. [116]

      Zhao, W.; He, Z.; Lam, J.; Peng, Q.; Ma, H.; Shuai, Z.; Bai, G.; Hao, J.; Tang, B. Z. Chem. 2016, 1, 592.  doi: 10.1016/j.chempr.2016.08.010

    117. [117]

      He, Z.; Zhao, W.; Lam, J.; Peng, Q.; Ma, H.; Liang, G.; Shuai, Z.; Tang, B. Z. Nat. Commun. 2017, 8, 416.  doi: 10.1038/s41467-017-00362-5

    118. [118]

      Shimizu, M.; Kimura, A.; Sakaguchi, H. Eur. J. Org. Chem. 2016, 467.  doi: 10.1002/ejoc.201690004

    119. [119]

      Yang, J.; Qin, J.; Geng, P.; Wang, J.; Fang, M.; Li, Z. Angew. Chem., Int. Ed. 2018, 57, 14174.  doi: 10.1002/anie.201809463

    120. [120]

      Li, J.; Zhou, J.; Mao, Z.; Xie, Z.; Yang, Z.; Xu, B.; Liu, C.; Chen, X.; Ren, D.; Pan, H.; Shi, G.; Zhang, Y.; Chi, Z. Angew. Chem., Int. Ed. 2018, 57, 6449.  doi: 10.1002/anie.201800762

    121. [121]

      Zhang, L.; Li, M.; Gao, Q.; Chen, C. Chin. J. Org. Chem. 2020, 40, 516(in Chinese).

    122. [122]

      Zhen, X.; Tao, Y.; An, Z.; Chen, P.; Xu, C.; Chen, R.; Huang, W.; Pu, K. Adv. Mater. 2017, 1606665.

    123. [123]

      Yang, J.; Zhen, X.; Wang, B.; Gao, X.; Ren, Z.; Wang, J.; Xie, Y.; Li, J.; Peng, Q.; Pu, K.; Li, Z. Nat. Commun. 2018, 9, 840.  doi: 10.1038/s41467-018-03236-6

    124. [124]

      Delgado, W.; Braun, C.; Boone, M.; Shynkaruk, O.; Qi, Y.; McDonald, R.; Ferguson, M.; Dara, P.; Almeida, S.; Aguiar, I.; Souza, G.; Alex, B.; He, G.; Rivard, E. ACS Appl. Mater. Interfaces 2018, 10, 12124.  doi: 10.1021/acsami.7b11628

    125. [125]

      Koch, M.; Perumal, K.; Blacque, O.; Garg, J.; Saiganesh, R.; Kabilan, S.; Balasubramanian, K.; Venkatesan, K. Angew. Chem., Int. Ed. 2014, 53, 6378.  doi: 10.1002/anie.201402199

    126. [126]

      Fang, M.; Yang, J.; Li, Z. Chin. J. Polym. Sci. 2019, 37, 383.  doi: 10.1007/s10118-019-2218-z

    127. [127]

      DeRosa, C.; Kerr, C.; Fan, Z.; Kolpaczynska, M.; Mathew, A.; Evans, R.; Zhang, G.; Fraser, C. ACS Appl. Mater. Interfaces 2015, 7, 23633.  doi: 10.1021/acsami.5b07126

    128. [128]

      Pramanik, S.; Bhalla, V.; Kumar, M. ACS Appl. Mater. Interfaces 2014, 6, 5930.  doi: 10.1021/am500903d

    129. [129]

      Zhang, Y.; Han, T.; Gu, S.; Zhou, T.; Zhao, C.; Guo, Y.; Feng, X.; Tong, B.; Bing, J.; Shi, J.; Zhi, J.; Dong, Y. Chem.-Eur. J.2014, 20, 8856.  doi: 10.1002/chem.201403132

    130. [130]

      Zhao, Y.; Lin, H.; Chen, M.; Yan, D. Ind. Eng. Chem. Res. 2014, 53, 3140.  doi: 10.1021/ie404054v

    131. [131]

      Ma, X.; Cheng, J.; Liu, J.; Zhou, X.; Xiang, H. New J. Chem. 2015, 39, 492.  doi: 10.1039/C4NJ01908C

    132. [132]

      Yu, L.; Wu, Z.; Xie, G.; Zhong, C.; Zhu, Z.; Ma, D.; Yang, C. Chem. Commun. 2018, 54, 1379.  doi: 10.1039/C7CC09925H

    133. [133]

      Salini, P. S.; Derry Holaday, M. G.; Reddy, M. L.; Suresh, C. H.; Srinivasan, A. Chem. Commun. 2013, 49, 2213.  doi: 10.1039/c3cc38723b

    134. [134]

      Salini, P. S.; Thomas, A.; Sabarinathan, R.; Ramakrishnan, S.; Sreedevi, K.; Reddy, M.; Srinivasan, A. Chem.-Eur. J. 2011, 17, 6598.  doi: 10.1002/chem.201100046

    135. [135]

      Karthik, G.; Krushna, P. V.; Srinivasan, A.; Chandrashekar, T. K. J. Org. Chem. 2013, 78, 8496.  doi: 10.1021/jo401232a

    136. [136]

      Ning, T.; Liu, L.; Jia, D.; Xie, X.; Wu, D. J. Photochem. Photobiol., A 2014, 291, 48.  doi: 10.1016/j.jphotochem.2014.07.002

    137. [137]

      Zhang, Z.; Hashim, M. I.; Miljanic, O. S. Chem. Commun. 2017, 53, 10022.  doi: 10.1039/C7CC03814C

    138. [138]

      Shimizu, M.; Takeda, Y.; Higashi, M.; Hiyama, T. Angew. Chem., Int. Ed. Engl. 2009, 48, 3653.  doi: 10.1002/anie.200900963

    139. [139]

      Chung, J.; An, B.; Hirato, F.; Kim, J.; Jinnai, H.; Park, S. J. Mater. Chem. 2010, 20, 7715.  doi: 10.1039/c0jm00896f

    140. [140]

      Wang, X.; He, D.; Huang, Y.; Fan, Q.; Wu, W.; Jiang, H. J. Org. Chem. 2018, 83, 5458.  doi: 10.1021/acs.joc.8b00378

    141. [141]

      Keruckiene, R.; Guzauskas, M.; Narbutaitis, E.; Tsiko, U.; Volyniuk, D.; Chen, C.; Chiu, T.; Lin, C.; Lee, J.; Grazulevicius, J. V. Org. Electron. 2020, 78, 105576.  doi: 10.1016/j.orgel.2019.105576

    142. [142]

      Kumari, N.; Naqvi, S.; Ahuja, M.; Bhardwaj, K.; Kumar, R. J. Mater. Sci.:Mater. Electron. 2020, 31, 4310.  doi: 10.1007/s10854-020-02986-8

    143. [143]

      Chung, J. W.; Yoon, S. J.; Lim, S. J.; An, B. K.; Park, S. Y. Angew. Chem., Int. Ed. 2009, 48, 7030.  doi: 10.1002/anie.200902777

    144. [144]

      Kim, J.; Chung, J.; Jung, Y.; Yoon, S.; An, B.; Huh, H.; Lee, O.; Park, S. J. Mater. Chem. 2010, 20, 10103.  doi: 10.1039/c0jm02646h

    145. [145]

      Chen, B.; Zhang, H.; Luo, W.; Nie, H.; Hu, R.; Qin, A.; Zhao, Z.; Tang, B. Z. J. Mater. Chem. C 2017, 5, 960.  doi: 10.1039/C6TC05116B

    146. [146]

      Guo, J.; Hu, S.; Luo, W.; Hu, R.; Qin, A.; Zhao, Z.; Tang, B. Z. Chem. Commun. 2017, 53, 1463  doi: 10.1039/C6CC09892D

    147. [147]

      Mallet, C.; Moussallem, C.; Faurie, A.; Allain, M.; Gohier, M.; Skene, W.; Frere, P. Chem.-Eur. J. 2015, 21, 7944.  doi: 10.1002/chem.201500023

    148. [148]

      Yan, H.; Meng, X.; Li, B.; Ge, S.; Lu, Y. Dyes Pigm. 2017, 146, 479.  doi: 10.1016/j.dyepig.2017.07.046

    149. [149]

      Zhao, C.; Zhao, Y.; Pan, H.; Fu, G. Chem. Commun. 2011, 47, 5518.  doi: 10.1039/c1cc10502g

    150. [150]

      Liu, Y.; Zhang, Y.; Wu, X.; Lan, Q.; Chen, C.; Liu, S.; Chi, Z.; Jiang, L.; Chen, X.; Xu, J. J. Mater. Chem. C 2014, 2, 1068.  doi: 10.1039/c4tc00553h

    151. [151]

      Raju, T. B.; Gopikrishna, P.; Vaghasiya, J. V.; Soni, S. S.; Iyer, P. K. J. Photochem. Photobiol., A 2019, 376, 12.  doi: 10.1016/j.jphotochem.2019.02.015

    152. [152]

      Ni, S.; Min, T.; Li, Y.; Zha, M.; Zhang, P.; Ho, C.; Li, K. Angew. Chem., Int. Ed. 2020, 132, 10265.  doi: 10.1002/ange.202001103

    153. [153]

      Wang, S.; Wamg, F.; Li, C.; Li, T.; Cao, D.; Ma, X. Sci. China:Chem. 2018, 61, 1301.  doi: 10.1007/s11426-018-9254-6

    154. [154]

      Morita, M.; Yamada, S.; Konno, T. New J. Chem. 2020, 44, 6704.  doi: 10.1039/D0NJ01268H

    155. [155]

      Hu, M.; Feng, H.; Yuan, Y.; Zheng, Y.; Tang, B. Z. Coord. Chem. Rev. 2020, 416, 213329.  doi: 10.1016/j.ccr.2020.213329

    156. [156]

      Shen, G.; Gou, F.; Cheng, J.; Zhang, X.; Zhou, X.; Xiang, H. RSC Adv. 2017, 7, 40640.  doi: 10.1039/C7RA08267C

    157. [157]

      Song, F.; Xu, Z.; Zhang, Q.; Zhao, Z.; Zhang, H.; Zhao, W.; Qiu, Z.; Qi, C.; Zhang, H.; Sung, H.; Williams, I.; Lam, J.; Zhao, Z.; Qin, A.; Ma, D.; Tang, B. Z. Adv. Funct. Mater. 2018, 23, 180051.

    158. [158]

      Zhao, N.; Gao, W.; Zhang, M.; Yang, J.; Zheng, X.; Li, Y.; Cui, R.; Yin, W.; Li, N. Mater. Chem. Front. 2019, 3, 1613.  doi: 10.1039/C9QM00292H

    159. [159]

      Li, X.; Shi, X.; Li, X.; Shi, D. Beilstein J. Org. Chem. 2019, 15, 2213.  doi: 10.3762/bjoc.15.218

    160. [160]

      Gouverneur, V.; Szpera, R.; Moseley, D.; Smith, B.; Sterling, A. Angew. Chem., Int. Ed. 2019, 58, 14828.

    161. [161]

      He, J.; Lou, S.; Xu, D. Chin. J. Org. Chem. 2016, 36, 1218(in Chinese).  doi: 10.6023/cjoc201512040

    162. [162]

      Yang, J.; Li, Z. Chin. J. Org. Chem. 2019, 39, 3304(in Chinese).
       

    163. [163]

      Yang, J.; Chi, Z.; Zhu, W.; Tang, B. Z.; Li, Z. Sci. China:Chem. 2019, 62, 1090.  doi: 10.1007/s11426-019-9512-x

    164. [164]

      Zhang, J.; Liu, H.; Meng, L. Chin. J. Org. Chem. 2019, 39, 3132(in Chinese).
       

    165. [165]

      Guan, X.; Li, Z.; Wang, L.; Liu, M.; Wang, K.; Yang, X.; Li, Y.; Hu, L.; Zhao, X.; Lai, S.; Lei, Z. Acta Chim. Sinica 2019, 77, 1268(in Chinese).
       

  • 加载中
    1. [1]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    2. [2]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    3. [3]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    4. [4]

      Hongxia Yan Weixu Feng Junyan Yao Wei Tian Rui Wang . Illuminating the Teaching of Science and Engineering Graduate Courses with “Curriculum Ideology and Politics”. University Chemistry, 2024, 39(6): 122-127. doi: 10.3866/PKU.DXHX202310059

    5. [5]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    6. [6]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    7. [7]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    8. [8]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    9. [9]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    10. [10]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    11. [11]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    12. [12]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    13. [13]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    14. [14]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    15. [15]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    16. [16]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    17. [17]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    18. [18]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    19. [19]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    20. [20]

      Siwen Yuan Qilin Wu TianpengYin . NMR Spectroscopy Teaching Design Using the Mosher Method for Stereochemistry of Organic Compounds Based on BOPPPS Teaching Model. University Chemistry, 2025, 40(7): 161-168. doi: 10.12461/PKU.DXHX202502073

Metrics
  • PDF Downloads(72)
  • Abstract views(3286)
  • HTML views(950)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return