† 共同第一作者(These authors contributed equally to this work).
摘要:
为寻找新型乙酰羟酸合成酶(EC 2.2.1.6,AHAS)抑制剂以克服由靶标突变(P197L突变)所引起的杂草抗性问题,利用“构象柔性度分析”策略设计、合成了一系列烷氧基取代的嘧啶水杨酸衍生物.其中,9个化合物对P197L突变型AHAS的抗性倍数(RF值)均小于等于1,在酶水平上具有良好的反抗性.特别是2-((4,6-二甲氧基嘧啶-2-基)氧基)-6-(2-氟乙氧基)苯甲酸(5l),被进一步确定为该系列最有效的反抗性AHAS抑制剂(RF=0.31),不仅与氯磺隆(RF=2060)和双草醚(RF=4.57)相比抗性程度大幅降低,并且对野生型AtAHAS和P197L突变体的抑制活性均达到了亚微摩尔水平,优于双草醚.此外,在150 g ai/ha的施用剂量下,2-((4,6-二甲氧基嘧啶-2-基)氧基)-6-(2-(甲氧基)乙氧基)苯甲酸(5a)、2-((4,6-二甲氧基嘧啶-2-基)氧基)-6-(3-(甲氧基)丙氧基)苯甲酸(5f)、2-((4,6-二甲氧基嘧啶-2-基)氧基)-6-(2-氟乙氧基)苯甲酸(5l)和2-((4,6-二甲氧基嘧啶-2-基)氧基)-6-(2,2-二氟乙氧基)苯甲酸(5m)对敏感型和抗性(P197L-AHAS)播娘蒿同时表现出优异的除草活性.值得注意的是,即使在最低剂量37.5 g ai/ha下,化合物5l对这两种杂草的除草防效仍超过85%,表现出良好的活体反抗性,具有深入研究的价值.
Key Laboratory of Pesticide&Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079
b.
State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071
Received Date:
20 March 2020 Revised Date:
12 April 2020 Available Online:
25 November 2020
Fund Project:
Project supported by the National Key Research and Development Program (No. 2018YFD0200100), the National Natural Science Foundation of China (Nos. 21837001, 21772058, 31901910) and the China Postdoctoral Science Foundation (No. 2018M642880)
Abstract:
In an attempt to search new antiresistance acetohydroxyacid synthase (AHAS, EC 2.2.1.6) inhibitors to combat weed resistance associated with AHAS mutation (P197L), a series of pyrimidyl-salicylate derivatives containing alkoxy side chain were designed via the strategy of "conformational flexibility analysis" and then synthesized. Nine compounds showed excellent antiresistance property against P197L mutant. Their resistance factor (RF) values ranged from 0.31 to 1.00. Especially, 2-((4, 6-dimethoxypyrimidin-2-yl)oxy)-6-(2-fluoroethoxy)benzoic acid (5l) was further identified as the most promising antiresistance AHAS inhibitor due to quite low RF value (RF=0.31) and sub-micromolar inhibition toward both wild-type AtAHAS and P197L mutant. Furthermore, 2-((4, 6-dimethoxypyrimidin-2-yl)oxy)-6-(2-methoxyethoxy)benzoic acid (5a), 2-((4, 6-dimethoxypyrimidin-2-yl)oxy)-6-(3-methoxypropoxy)benzoic acid (5f), 2-((4, 6-dimethoxypyrimidin-2-yl)oxy)-6-(2-fluoroethoxy)benzoic acid (5l), and 2-(2, 2-difluoroethoxy)-6-((4, 6-dimethoxypyrimidin-2-yl)oxy)benzoic acid (5m) also exhibited potent herbicidal activities against sensitive and resistant (P197L-AHAS) Descurainia sophia at 150 g of active ingredient (ai)/ha. Even at the dosage as low as 37.5 g ai/ha, compound 5l still maintained over 85% weed control toward the above two weeds, which has the great potential to be developed as new lead to control herbicide-resistant weeds caused by P197L mutation.
Figure 1.
Diagram of molecular design of title compounds 5a~5p and the superposition map of the binding models of commercial PTB inhibitor bispyribac with wild-type AtAHAS (PDB ID:5K2O) and P197L mutant
Yellow stick structure represents the binding conformation of the molecule in wild-type AtAHAS, blue-green stick structure represents the binding conformation of the molecule in P197L mutant, residue P197 showed as rose-bengal, residue L197 showed as blue
Figure 2.
Binding mode of compound 5l with (A)wild-type AtAHAS, (B) P197L mutant and (C) the superposition of the binding models of compound 5l with wild-type AtAHAS (ligand showed as orange and protein showed as blue) and P197L mutant (ligand showed as cyan and protein showed as magenta)
Dedicated to the 40th anniversary of Chinese Journal of Organic Chemistry
[1]
Gianessi, L. P. Pest Manage. Sci. 2013, 47, 1099.
[2]
(a) Ruegg, W. T.; Quadranti, M.; Zoschke, A. Weed Res. 2007, 47, 271. (b) Renton, M.; Busi, R.; Neve, P.; Thornby, D.; Vila-Aiub, M. Pest Manage. Sci. 2014, 70, 1394.
[3]
(a) Owen, M. D. Weed Sci. 2016, 70, 570. (b) Green, J. M.; Owen, M. D. K. J. Agric. Food Chem. 2011, 59, 5819. (c) Powles, S. B.; Yu, Q. Annu. Rev. Plant Biol. 2010, 61, 317.
[4]
(a) Heap, I. Pest Manage. Sci. 2014, 70, 1306. (b) Busi, R.; Vila-Aiub, M. M.; Beckie, H. J.; Gaines, T. A.; Goggin, D. E.; Kaundun, S. S.; Lacoste, M.; Neve, P.; Nissen, S. J.; Norsworthy, J. K.; Renton, M.; Shane, D. L.; Tranel, R. P. J.; Wright, T.; Yu, Q.; Powles, S. B. Evol. Appl. 2013, 6, 1218.
[5]
Bar-Ilan, A.; Balan, V.; Tittmann, K.; Golbik, R.; Vyazmensky, M.; Huebner, G.; Barak, Z.; Chipman, D. M. Biochemistry2001, 40, 11946. doi: 10.1021/bi0104524
(a) Yu, Q.; Powles, S. B. Pest Manage. Sci. 2014, 70, 1340. (b) Heap, I. The International Survey of Herbicide-Resistant Weeds, www.weedscience.org (accessed March 15, 2020).
[8]
Corbett, C. A. L.; Tardif, F. J. Pest Manage. Sci. 2006, 62, 584. doi: 10.1002/ps.1219
[9]
(a) Intanon, S.; Perez-Jones, A.; Hulting, A. G.; Mallory-Smith, C. A. Weed Sci. 2011, 59, 431. (b) Délye, C.; Causse, R.; Michel, S. Pest Manage. Sci. 2016, 72, 89.
[10]
(a) Ji, F. Q.; Niu, C. W.; Chen, C. N.; Chen, Q.; Yang, G. F.; Xi, Z.; Zhan, C. G. ChemMedChem2008, 3, 1203. (b) Liu, Y. C.; Qu, R. Y.; Chen, Q.; Yang, J. F.; Niu, C. W.; Xi, Z.; Yang, G. F. J. Agric. Food Chem. 2016, 64, 4845. (c) Qu, R. Y.; Yang, J. F.; Liu, Y. C.; Chen, Q.; Hao, G. F.; Niu, C. W.; Xi, Z.; Yang, G. F. Pest Manage. Sci. 2017, 73, 1373. (d) Qu, R. Y.; Yang, J. F.; Devendar, P.; Kang, W. M.; Liu, Y. C.; Chen, Q.; Niu, C. W.; Xi, Z.; Yang, G. F. J. Agric. Food Chem. 2017, 65, 11170. (e) Qu, R. Y.; Yang, J. F.; Chen, Q.; Niu, C. W.; Xi, Z.; Yang, W. C.; Yang, G. F. Pest Manage. Sci. 2020, 76, 3403. (f) Qu, R. Y.; Yan, Y. C.; Yang, J. F.; Chen, Q.; Yang, G. F. Chin. J. Org. Chem. 2019, 39, 2303(in Chinese) (曲仁渝, 严耀超, 杨景芳, 陈琼, 杨光富, 有机化学, 2019, 39, 2303.) (g) Li, K. J.; Qu, R. Y.; Liu, Y. C.; Yang, J. F.; Devendar, P.; Chen, Q.; Niu, C. W.; Xi, Z.; Yang, G. F. J. Agric. Food Chem. 2018, 66, 3773.
[11]
(a) Lin, H. Y.; Chen, X.; Chen, J. N.; Wang, D. W.; Wu, F. X.; Lin, S. Y.; Liu, J. J.; Dong, J. Q.; Zhan, C. G.; Wu, J. W.; Yang, W. C.; Yang, G. F. Research2019, 2602414. (b) Xiong, L.; Li, Hua.; Jiang, L. N.; Ge, J. M.; Yang, W. C.; Zhu, X. L.; Yang, G. F. J. Agric. Food Chem. 2017, 65, 1021. (c) Xiong, L.; Zhu, X. L.; Gao, H. W.; Fu, Y.; Hu, S. Q.; Jiang, L. N.; Yang, W. C.; Yang, G. F. J. Agric. Food Chem. 2016, 64, 4830. (d) Hao, G. F.; Wang, F.; Li, Hui, Zhu, X. L.; Yang, W. C.; Huang, L. S.; Wu, J. W.; Berry, E. A.; Yang, G. F. J. Am. Chem. Soc. 2012, 134, 11168.
[12]
(a) Qu, R. Y.; Liu, Y. C.; Wu, Q. Y.; Chen, Q.; Yang, G. F. Tetrahedron2015, 71, 8123. (b) Hadfield, A.; Schweitzer, H.; Trova, M. P.; Green, K. Synth. Commun. 1994, 24, 1025.
[13]
Garcia, M. D.; Nouwens, A.; Lonhienne, T. G.; Guddat, L. W. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 1091. doi: 10.1073/pnas.1616142114
[14]
Cui, H. L.; Zhang, C. X.; Wei, S. H.; Zhang, H. J.; Li, X. J.; Zhang, Y. Q.; Wang, G. Q. Weed Sci. 2011, 59, 376. doi: 10.1614/WS-D-10-00099.1
[15]
(a) Souto, J. A.; Benedetti, R.; Otto, K.; Miceli, M.; Álvarez, R.; Altucci, L.; de Lera, A. R. ChemMedChem2010, 5, 1530. (b) Ghizzoni, M.; Boltjes, A.; Graaf, C. d.; Haisma, H. J.; Dekker, F. J. Bioorg. Med. Chem. 2010, 18, 5826.
[16]
刘玉超, 博士论文, 华中师范大学, 武汉, 2014.Liu, Y. C. Ph.D. Dissertation, Central China Normal University, Wuhan, 2014 (in Chinese)
[17]
Sitkoff, D.; Sharp, K. A.; Honig, B. J. Phys. Chem. 1994, 98, 1978. doi: 10.1021/j100058a043
Figure 1
Diagram of molecular design of title compounds 5a~5p and the superposition map of the binding models of commercial PTB inhibitor bispyribac with wild-type AtAHAS (PDB ID:5K2O) and P197L mutant
Yellow stick structure represents the binding conformation of the molecule in wild-type AtAHAS, blue-green stick structure represents the binding conformation of the molecule in P197L mutant, residue P197 showed as rose-bengal, residue L197 showed as blue
Figure 2
Binding mode of compound 5l with (A)wild-type AtAHAS, (B) P197L mutant and (C) the superposition of the binding models of compound 5l with wild-type AtAHAS (ligand showed as orange and protein showed as blue) and P197L mutant (ligand showed as cyan and protein showed as magenta)