Citation: Qu Renyu, Cai Zhuomei, Yang Jingfang, Liu Yuchao, Chen Qiong, Niu Congwei, Xi Zhen, Yang Guangfu. Design, Synthesis and Biological Activity of Pyrimidyl-Salicylate Derivatives Containing Alkoxy Moiety[J]. Chinese Journal of Organic Chemistry, ;2020, 40(11): 3953-3962. doi: 10.6023/cjoc202003050 shu

Design, Synthesis and Biological Activity of Pyrimidyl-Salicylate Derivatives Containing Alkoxy Moiety

  • Corresponding author: Yang Guangfu, gfyang@mail.ccnu.edu.cn
  • Received Date: 20 March 2020
    Revised Date: 12 April 2020
    Available Online: 23 April 2020

    Fund Project: Project supported by the National Key Research and Development Program (No. 2018YFD0200100), the National Natural Science Foundation of China (Nos. 21837001, 21772058, 31901910) and the China Postdoctoral Science Foundation (No. 2018M642880)the China Postdoctoral Science Foundation 2018M642880the National Key Research and Development Program 2018YFD0200100the National Natural Science Foundation of China 21837001the National Natural Science Foundation of China 31901910the National Natural Science Foundation of China 21772058

Figures(3)

  • In an attempt to search new antiresistance acetohydroxyacid synthase (AHAS, EC 2.2.1.6) inhibitors to combat weed resistance associated with AHAS mutation (P197L), a series of pyrimidyl-salicylate derivatives containing alkoxy side chain were designed via the strategy of "conformational flexibility analysis" and then synthesized. Nine compounds showed excellent antiresistance property against P197L mutant. Their resistance factor (RF) values ranged from 0.31 to 1.00. Especially, 2-((4, 6-dimethoxypyrimidin-2-yl)oxy)-6-(2-fluoroethoxy)benzoic acid (5l) was further identified as the most promising antiresistance AHAS inhibitor due to quite low RF value (RF=0.31) and sub-micromolar inhibition toward both wild-type AtAHAS and P197L mutant. Furthermore, 2-((4, 6-dimethoxypyrimidin-2-yl)oxy)-6-(2-methoxyethoxy)benzoic acid (5a), 2-((4, 6-dimethoxypyrimidin-2-yl)oxy)-6-(3-methoxypropoxy)benzoic acid (5f), 2-((4, 6-dimethoxypyrimidin-2-yl)oxy)-6-(2-fluoroethoxy)benzoic acid (5l), and 2-(2, 2-difluoroethoxy)-6-((4, 6-dimethoxypyrimidin-2-yl)oxy)benzoic acid (5m) also exhibited potent herbicidal activities against sensitive and resistant (P197L-AHAS) Descurainia sophia at 150 g of active ingredient (ai)/ha. Even at the dosage as low as 37.5 g ai/ha, compound 5l still maintained over 85% weed control toward the above two weeds, which has the great potential to be developed as new lead to control herbicide-resistant weeds caused by P197L mutation.
  • 加载中
    1. [1]

      Gianessi, L. P. Pest Manage. Sci. 2013, 47, 1099.

    2. [2]

      (a) Ruegg, W. T.; Quadranti, M.; Zoschke, A. Weed Res. 2007, 47, 271.
      (b) Renton, M.; Busi, R.; Neve, P.; Thornby, D.; Vila-Aiub, M. Pest Manage. Sci. 2014, 70, 1394.

    3. [3]

      (a) Owen, M. D. Weed Sci. 2016, 70, 570.
      (b) Green, J. M.; Owen, M. D. K. J. Agric. Food Chem. 2011, 59, 5819.
      (c) Powles, S. B.; Yu, Q. Annu. Rev. Plant Biol. 2010, 61, 317.

    4. [4]

      (a) Heap, I. Pest Manage. Sci. 2014, 70, 1306.
      (b) Busi, R.; Vila-Aiub, M. M.; Beckie, H. J.; Gaines, T. A.; Goggin, D. E.; Kaundun, S. S.; Lacoste, M.; Neve, P.; Nissen, S. J.; Norsworthy, J. K.; Renton, M.; Shane, D. L.; Tranel, R. P. J.; Wright, T.; Yu, Q.; Powles, S. B. Evol. Appl. 2013, 6, 1218.

    5. [5]

      Bar-Ilan, A.; Balan, V.; Tittmann, K.; Golbik, R.; Vyazmensky, M.; Huebner, G.; Barak, Z.; Chipman, D. M. Biochemistry 2001, 40, 11946.  doi: 10.1021/bi0104524

    6. [6]

      Qu, R. Y.; Liu, Y. C.; Chen, Q.; Yang G. F. J. Cent. China Norm. Univ. (Nat. Sci.) 2015, 49, 735(in Chinese)  doi: 10.3969/j.issn.1000-1190.2015.05.015

    7. [7]

      (a) Yu, Q.; Powles, S. B. Pest Manage. Sci. 2014, 70, 1340.
      (b) Heap, I. The International Survey of Herbicide-Resistant Weeds, www.weedscience.org (accessed March 15, 2020).

    8. [8]

      Corbett, C. A. L.; Tardif, F. J. Pest Manage. Sci. 2006, 62, 584.  doi: 10.1002/ps.1219

    9. [9]

      (a) Intanon, S.; Perez-Jones, A.; Hulting, A. G.; Mallory-Smith, C. A. Weed Sci. 2011, 59, 431.
      (b) Délye, C.; Causse, R.; Michel, S. Pest Manage. Sci. 2016, 72, 89.

    10. [10]

    11. [11]

      (a) Lin, H. Y.; Chen, X.; Chen, J. N.; Wang, D. W.; Wu, F. X.; Lin, S. Y.; Liu, J. J.; Dong, J. Q.; Zhan, C. G.; Wu, J. W.; Yang, W. C.; Yang, G. F. Research 2019, 2602414.
      (b) Xiong, L.; Li, Hua.; Jiang, L. N.; Ge, J. M.; Yang, W. C.; Zhu, X. L.; Yang, G. F. J. Agric. Food Chem. 2017, 65, 1021.
      (c) Xiong, L.; Zhu, X. L.; Gao, H. W.; Fu, Y.; Hu, S. Q.; Jiang, L. N.; Yang, W. C.; Yang, G. F. J. Agric. Food Chem. 2016, 64, 4830.
      (d) Hao, G. F.; Wang, F.; Li, Hui, Zhu, X. L.; Yang, W. C.; Huang, L. S.; Wu, J. W.; Berry, E. A.; Yang, G. F. J. Am. Chem. Soc. 2012, 134, 11168.

    12. [12]

      (a) Qu, R. Y.; Liu, Y. C.; Wu, Q. Y.; Chen, Q.; Yang, G. F. Tetrahedron 2015, 71, 8123.
      (b) Hadfield, A.; Schweitzer, H.; Trova, M. P.; Green, K. Synth. Commun. 1994, 24, 1025.

    13. [13]

      Garcia, M. D.; Nouwens, A.; Lonhienne, T. G.; Guddat, L. W. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 1091.  doi: 10.1073/pnas.1616142114

    14. [14]

      Cui, H. L.; Zhang, C. X.; Wei, S. H.; Zhang, H. J.; Li, X. J.; Zhang, Y. Q.; Wang, G. Q. Weed Sci. 2011, 59, 376.  doi: 10.1614/WS-D-10-00099.1

    15. [15]

      (a) Souto, J. A.; Benedetti, R.; Otto, K.; Miceli, M.; Álvarez, R.; Altucci, L.; de Lera, A. R. ChemMedChem 2010, 5, 1530.
      (b) Ghizzoni, M.; Boltjes, A.; Graaf, C. d.; Haisma, H. J.; Dekker, F. J. Bioorg. Med. Chem. 2010, 18, 5826.

    16. [16]

      Liu, Y. C. Ph.D. Dissertation, Central China Normal University, Wuhan, 2014 (in Chinese)

    17. [17]

      Sitkoff, D.; Sharp, K. A.; Honig, B. J. Phys. Chem. 1994, 98, 1978.  doi: 10.1021/j100058a043

  • 加载中
    1. [1]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    2. [2]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    3. [3]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    4. [4]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    5. [5]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    6. [6]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    7. [7]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    8. [8]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    9. [9]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    10. [10]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    11. [11]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    12. [12]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    13. [13]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    14. [14]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    15. [15]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    16. [16]

      Haifeng Ma Xiaocong Tian Fengbin Wang Zhonghua Xi QingWang . Design of College Chemistry Experiment Based on Product Quality Control: Taking “Optimization of Ferrous Fumarate Synthesis Process” as an Example. University Chemistry, 2025, 40(7): 321-327. doi: 10.12461/PKU.DXHX202409056

    17. [17]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    18. [18]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    19. [19]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    20. [20]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

Metrics
  • PDF Downloads(27)
  • Abstract views(3354)
  • HTML views(363)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return