Citation: Wang Feng, Tang Pingping. Recent Advances in Trifluoromethoxylation Reactions[J]. Chinese Journal of Organic Chemistry, ;2020, 40(7): 1805-1813. doi: 10.6023/cjoc202003048 shu

Recent Advances in Trifluoromethoxylation Reactions

  • Corresponding author: Tang Pingping, ptang@nankai.edu.cn
  • Received Date: 20 March 2020
    Revised Date: 24 April 2020
    Available Online: 30 April 2020

    Fund Project: The National Natural Science Foundation of China 21925105Project supported by the National Key Research and Development Program of China (No. 2016YFA0602900), the National Natural Science Foundation of China (Nos. 21672110, 21925105) and the Natural Science Foundation of Tianjin City (No. 18JCJQJC47000)The Natural Science Foundation of Tianjin City 18JCJQJC47000Project supported by the National Key Research and Development Program of China 2016YFA0602900The National Natural Science Foundation of China 21672110

Figures(19)

  • In recent years, the field of organic fluorine chemistry has developed rapidly. Fluorination and fluorine-containing functionalization reactions have attracted extensive attention of organic chemists due to their special physical and chemical properties. The introduction of fluorine-containing group into drug molecules can improve the biological activity of drug molecules. Trifluoromethoxy group has strong electron absorption and high lipophilicity, compounds containing trifluoromethoxy play an important role in the fields of medicine, pesticides and materials. In recent years, some innovative strategies have been used to synthesize compounds containing trifluoromethoxy group. This account mainly focuses on the research of trifluoromethoxy reaction in our group, and some challenges faced by trifluoromethoxy reaction.
  • 加载中
    1. [1]

      (a) Becker A. Inventory of Industrial Fluoro-biochemicals, Eyrolles, Paris, 1996.
      (b) Smart, B. E. J. Fluorine Chem. 2001, 109, 3.
      (c) Dunitz, J. D. ChemBioChem 2004, 5, 614.
      (d) Dolbier, W. R. J. Fluorine Chem. 2005, 126, 157.
      (e) Hird, M. Chem. Soc. Rev. 2007, 36, 2070.
      (f) Pagliaro, M.; Ciriminna R. J. Mater. Chem. 2005, 15, 4981.
      (g) Wang, J.; Snchez-Rosell, M.; AceÇa, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
      (h) Jeschke, P. ChemBioChem 2004, 5, 570.

    2. [2]

      (a) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.
      (b) Mller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.

    3. [3]

      Leo, A.; Hansch, C.; Elkins, D. Chem. Rev. 1971, 71, 525.  doi: 10.1021/cr60274a001

    4. [4]

      Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165.  doi: 10.1021/cr00002a004

    5. [5]

      (a) Kapustin, E. G.; Bzhezovsky, V. M.; Yagupolskii, L. M. J. Fluorine Chem. 2002, 113, 227.
      (b) Klocker, J.; Karpfen, A.; Wolschann, P. Chem. Phys. Lett. 2003, 367, 566.
      (c) Manteau, B.; Genix, P.; Brelot, L.; Vors, J. P.; Pazenok, S.; Giornal, F.; Leuenberger, C.; Leroux, F. R. Eur. J. Org. Chem. 2010, 6043.

    6. [6]

      Moujalled, D.; White, A. R. CNS Drugs 2016, 30, 227.
       

    7. [7]

      (a) Yagupol'skii, L. M. Dokl. Akad. Nauk SSSR 1955, 105, 100.
      (b) Yarovenko, N. N.; Vasileva, A. S. Zh. Obshch. Khim. 1958, 28, 2502.
      (c) Yagupol'skii, L. M.; Troitskaya, V. I. J. Gen. Chem. USSR 1961, 31, 845.
      (d) Yagupol'skii, L. M.; Orda, V. V. Zh. Obshch. Khim. 1964, 34, 1979.
      (e) Manteau, B.; Genix, P.; Brelot, L.; Vors, J. P.; Pazenok, S.; Giornal, F.; Leuenberger, C.; Leroux, F. R. Eur. J. Org. Chem. 2010, 6043.
      (f) Sheppard, W. A. J. Org. Chem. 1964, 29, 1.
      (g) Kuroboshi, M.; Suzuki, K.; Hiyama, T. Tetrahedron Lett. 1992, 33, 4173.
      (h) Kanie, K.; Tanaka, Y.; Suzuki, K.; Kuroboshi, M.; Hiyama, T. Bull. Chem. Soc. Jpn. 2000, 73, 471.
      (i) Kuroboshi, M.; Hiyama, T. Adv. Synth. Catal. 2001, 343, 235.

    8. [8]

      For recent reviews on trifluoromethoxylation reactions, see: (a) Besset, T.; Jubault, P.; Pannecouke, X.; Poisson, T. Org. Chem. Front. 2016, 3, 1004.
      (b) Tlili, A.; Toulgoat, F.; Billard, T. Angew. Chem., Int. Ed. 2016, 57, 11726.
      (c) Lee, K. N.; Lee, J. W.; Ngai, M. Y. Tetrahedron 2018, 74, 7127.
      (d) Lee, J. W.; Lee, K. N.; Ngai, M. Y. Angew. Chem., Int. Ed. 2019, 58, 11171.
      (e) Hardy, M. A.; Chachignon, H.; Cahard, D. Asian J. Org. Chem. 2019, 8, 591.
      (f) Zhang, X. F.; Tang, P. P. Sci. China: Chem. 2019, 62, 525.
      (g) Jiang, X. H.; Tang, P. P. Chin. J. Chem. 2020, 38, 101.

    9. [9]

      (a) Umemoto, T.; Adachi, K.; Ishihara, S. J. Org. Chem. 2007, 72, 6905.
      (b) Stanek, K.; Koller, R.; Togni, A. J. Org. Chem. 2008, 73, 7678.
      (c) Liang, A.; Han, S.; Liu, Z.; Wang, L.; Li, J.; Zou, D.; Wu, Y. Chem.-Eur. J. 2016, 22, 5102.
      (d) Koller, R.; Huchet, Q.; Battaglia, P.; Welch, J. M.; Togni, A. Chem. Commun. 2009, 5993.
      (e) Santschi, N.; Geissbhler, P.; Togni, A. J. Fluorine Chem. 2012, 135, 83.
      (f) Matousek, V.; Pietrasiak, E.; Sigrist, L.; Czarniecki, B.; Togni, A. Eur. J. Org. Chem. 2014, 3087.
      (g) Hojczyk, K. N.; Feng, P.; Zhan, C.; Ngai, M. Y. Angew. Chem., Int. Ed. 2014, 53, 14559.
      (h) Chu, L.; Qing, F. L. Acc. Chem. Res. 2014, 47, 1513.
      (i) Liu, J. B.; Chen, C.; Chu, L.; Chen, Z. H.; Xu, X. H.; Qing, F. L. Angew. Chem., Int. Ed. 2015, 54, 11839. (j) Liu, J. B.; Xu, X. H.; Qing, F. L. Org. Lett. 2015, 17, 5048.
      (k) Naumann, D.; Kischkewitz, J. J. Fluorine Chem. 1990, 46, 265.
      (l) Hojczyk, K. N.; Feng, P.; Zhan, C.; Ngai, M. Y. Angew. Chem., Int. Ed. 2014, 53, 14559.
      (m) Lee, K. N.; Lee, J. W.; Ngai, M. Y. Synlett 2016, 27, 313.

    10. [10]

      Kellogg, K. B.; Cady, G. H. J. Am. Chem. Soc. 1948, 70, 3986.  doi: 10.1021/ja01192a006

    11. [11]

      Venturini, F.; Navarrini, W.; Famulari, A.; Sansotera, M.; Dardani, P.; Tortelli, V. J. Fluorine Chem. 2012, 140, 43.  doi: 10.1016/j.jfluchem.2012.04.008

    12. [12]

      (a) Zheng, W. J.; Morales-Rivera, C. A.; Lee, J. W.; Liu, P.; Ngai, M. Y. Angew. Chem., Int. Ed. 2018, 57, 9645.
      (b) Zheng, W. J.; Lee, J. W.; Morales-Rivera, C. A.; Liu, P.; Ngai, M. Y. Angew. Chem., Int. Ed. 2018, 57, 13795.

    13. [13]

      Jelier, B. J.; Tripet, P. F.; Pietrasiak, E.; Franzoni, I.; Jeschke, G.; Togni, A. Angew. Chem., Int. Ed. 2018, 57, 13784.
       

    14. [14]

      (a) Noftle, R. E.; Cady, G. H. Inorg. Chem, 1965, 4, 1010.
      (b) Katsuhara, Y.; DesMarteau, D. D. J. Am. Chem. Soc. 1980, 102, 2681.

    15. [15]

      (a) Kolomeitsev, A. A.; Vorobyev, M.; Gillandt, H. Tetrahedron Lett. 2008, 49, 449.
      (b) Ignatyev, N.; Hierse, W.; Seidel, M.; Bathe, A.; Schroeter, J.; Koppe, K.; Meier, T.; Barthen, P.; Frank, W. DE 102008024221, 2009.
      (c) Ignatyev, N.; Hierse, W.; Seidel, M.; Bathe, M.; Schroeter, J.; Koppe, K.; Meier, T.; Barthen, P.; Frank, W. WO 2009141053, 2009.
      (d) Marrec, O.; Billard, T.; Vors, J. P.; Pazenok, S.; Langlois, B. R. J. Fluorine Chem. 2010, 131, 200.
      (e) Sokolenko, T. M.; Davydova, Y. A.; Yagupol'skii, Y. L. J. Fluorine Chem. 2012, 136, 20.

    16. [16]

      (a) Barbion, J.; Pazenok, S.; Vors, J. P.; Langlois, B. R.; Billard, T. Org. Process Res. Dev. 2014, 18, 1037.
      (b) Chen, C. H.; Chen, P. H.; Liu, G. S. J. Am. Chem. Soc. 2015, 137, 15648.
      (c) Chen, C. H.; Luo, Y. X.; Fu, L.; Chen, P. H.; Lan, Y.; Liu, G. S. J. Am. Chem. Soc. 2018, 140, 1207.
      (d) Chen, S.; Huang, Y.; Fang, X.; Li, H.; Zhang, Z.; Hor, T. S. A.; Weng, Z. Dalton Trans. 2015, 44, 19682.
      (e) Zha, G. F.; Han, J. B.; Hu, X. Q.; Qin, H. L.; Fang, W. Y.; Zhang, C. P. Chem. Commun. 2016, 52, 7458.
      (f) Chen, D.; Lu, L.; Shen, Q. L. Org. Chem. Front. 2019, 6, 1801.
      (g) Yang, Y.; Yao, J.; Yan, W.; Luo, Z.; Tang, Z. Org. Lett. 2019, 21, 8003.
      (h) Chen, C. H.; Hou, C. Q.; Chen, P. H.; Liu, G. S. Chin. J. Chem. 2020, 38, 346.

    17. [17]

      (a) Qi, X. X.; Chen, P. H.; Liu, G. S. Angew. Chem., Int. Ed. 2017, 56, 9517.
      (b) Chen, C. H.; Pfluger, P. M.; Chen, P. H.; Liu, G. S. Angew. Chem., Int. Ed. 2019, 58, 2392.

    18. [18]

      (a) Farnham, W. B.; Smart, B. E.; Middleton, W. J.; Calabrese, J. C.; Dixon, D. A. J. Am. Chem. Soc. 1985, 107, 4565.
      (b) Huang, C.; Liang, T.; Harada, S.; Lee, E.; Ritter, T. J. Am. Chem. Soc. 2011, 133, 13308.

    19. [19]

      Newton, J. J.; Jilier, B. J.; Meanwell, M.; Martin, R. E.; Britton, R.; Friesen, C. M. Org. Lett. 2020, 22, 1785.  doi: 10.1021/acs.orglett.0c00099

    20. [20]

      Marrec, O.; Billard, T.; Vors, J.; Pazenok, P.; Langlois, B. R. Adv. Synth. Catal. 2010, 352:2831.  doi: 10.1002/adsc.201000488

    21. [21]

      (a) Guo, S.; Cong, F.; Guo, R.; Wang, L.; Tang, P P. Nat. Chem. 2017, 9, 546.
      (b) Jiang, X. H.; Deng, Z. J.; Tang, P. P. Angew. Chem., Int. Ed. 2018, 130, 298.
      (c) Liu, J.; Wei, Y. L.; Tang, P. P. J. Am. Chem. Soc. 2018, 140, 15194.
      (d) Cong, F.; Wei, Y. L.; Tang, P. P. Chem. Commun. 2018, 54, 4473.
      (e) Yang, H. D.; Wang, F.; Jiang, X. H.; Zhou, Y.; Xu, X. F.; Tang, P. P. Angew. Chem., Int. Ed. 2018, 57. 13266.
      (f) Wang, F.; Xu, P.; Cong, F.; Tang, P. P. Chem. Sci. 2018, 9, 8836.
      (g) Yang, S. Q.; Chen, M.; Tang, P. P. Angew. Chem., Int. Ed. 2019, 58, 7840.

    22. [22]

      Zhou, M.; Ni, C.; Zeng, Y.; Hu, J. B. J. Am. Chem. Soc. 2018, 140, 6801.  doi: 10.1021/jacs.8b04000

    23. [23]

      Li. Y.; Yang, Y.; Xin, J. R.; Tang, P. P. Nat. Commun. 2020, 11, 755.  doi: 10.1038/s41467-020-14598-1

    24. [24]

      Xu, P.; Guo, S.; Wang, L. Y.; Tang, P. P. Angew. Chem., Int. Ed. 2014, 53, 5955.  doi: 10.1002/anie.201400225

    25. [25]

      Xu, P.; Wang, F.; Fan, G. L.; Xu, X. F.; Tang, P. P. Angew. Chem., Int. Ed. 2017, 56, 1101.
       

  • 加载中
    1. [1]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    2. [2]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    5. [5]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    6. [6]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    7. [7]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

    8. [8]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    9. [9]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    10. [10]

      Fengmiao Yu Yang Sheng Chanyue Li Bao Li . The Three Lives of Aspirin. University Chemistry, 2024, 39(9): 115-121. doi: 10.12461/PKU.DXHX202402033

    11. [11]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    12. [12]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    13. [13]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    14. [14]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    15. [15]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    16. [16]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    17. [17]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    18. [18]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    19. [19]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    20. [20]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

Metrics
  • PDF Downloads(217)
  • Abstract views(5314)
  • HTML views(2238)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return