Citation: Chen Ying, Jing Xiaobi, Yu Lei. Polyaniline-Supported Copper-Catalyzed Buchwald-Hartwig Couplings of Pyrimidin-2-amines[J]. Chinese Journal of Organic Chemistry, ;2020, 40(8): 2570-2574. doi: 10.6023/cjoc202003044 shu

Polyaniline-Supported Copper-Catalyzed Buchwald-Hartwig Couplings of Pyrimidin-2-amines

  • Corresponding author: Jing Xiaobi, xbjing@yzu.edu.cn Yu Lei, yulei@yzu.edu.cn
  • Received Date: 17 March 2020
    Revised Date: 1 May 2020
    Available Online: 19 May 2020

    Fund Project: the Natural Science Foundation of Jiangsu Province BK20181449the Jiangsu Provincial Six Talent Peaks Project XCL-090Project supported by the Natural Science Foundation of Jiangsu Province (No. BK20181449), the Jiangsu Provincial Six Talent Peaks Project (No. XCL-090) and the Priority Academic Program Development of Jiangsu Higher Education Institutions

Figures(2)

  • Buchwald-Hartwig couplings can modify the pyrimidin-2-amines. Since the pyrimidin-2-amine structures widely exist in medicines, the reaction is of significant industrial application values. The polyaniline-supported copper catalyst (Cu@PANI) was synthesized via the oxidative polymerization of aniline in the presence of copper salt and it could catalyze the Buchwald-Hartwig couplings of pyrimidin-2-amines. Since the nitrogen in polyaniline could well coordinate with copper, the reaction did not require additional ligands and occurred at relatively high catalyst turnover numbers (TONs). As a heterogeneous catalyst, Cu@PANI could be recycled and reused to reduce the cost of catalyst, and meet the requirements of industrial application.
  • 加载中
    1. [1]

      (a) Dorel, R.; Grugel, C. P.; Haydl, A. M. Angew. Chem., Int. Ed. 2019, 58, 17118.
      (b) Forero-Cortés, P. A.; Haydl, A. M. Org. Process Res. Dev. 2019, 23, 1478.
      (c) Heravi, M. M.; Kheilkordi, Z.; Zadsirjan, V.; Heydari, M.; Malmir, M. J. Organomet. Chem. 2018, 861, 17.

    2. [2]

      (a) Zhang, X.; Sun, J.; Chen, T.; Yang, C.; Yu, L. Synlett 2016, 27, 2233.
      (b) Liu, Y.-F.; Wang, C.-L.; Bai, Y.-J.; Han, N.; Jiao, J.-P.; Qi, X.-L. Org. Process Res. Dev. 2008, 12, 490.
      (c) Heo, Y.; Hyun, D.; Kumar, M. R.; Jung, H. M.; Lee, S. Tetrahedron Lett. 2012, 53, 6657.

    3. [3]

      (a) Bhunia, S.; Vijay Kumar, S.; Ma, D. J. Org. Chem. 2017, 82, 12603.
      (b) Ohyoshi, T.; Akemoto, K.; Taniguchi, A.; Ishihara, T.; Kigoshi, H. New J. Chem. 2019, 43, 18442.
      (c) Garcia, R. C.; Pech, M. J.; Sommer, R.; Gorman, C. B. J. Org. Chem. 2019, 84, 15079.
      (d) Thomas, G. T.; Janusson, E.; Zijlstra, H. S.; McIndoe, J. S. Chem. Commun. 2019, 55, 11727.

    4. [4]

      (a) Yang, Y.; Li, M.; Cao, H.; Zhang, X.; Yu, L. Mol. Catal. 2019, 474, 110450.
      (b) Chu, S.; Cao, H.; Chen, T.; Shi, Y.; Yu, L. Catal. Commun. 2019, 129, 105730.
      (c) Zhao, S.; Xu, B.; Yu, L.; Fan, Y. Chin. Chem. Lett. 2018, 29, 475.
      (d) Zhao, S.; Xu, B.; Yu, L.; Fan, Y. Chin. Chem. Lett. 2018, 29, 884.
      (e) Chen, C.; Cao, K.; Wei, Z.; Zhang, Q.; Yu, L. Mater. Lett. 2018, 226, 63.
      (f) Zhang, D.; Wei, Z.; Yu, L. Sci. Bull. 2017, 62, 1325.

    5. [5]

      (a) Yu, L.; Huang, Y.; Wei, Z.; Ding, Y.; Su, C.; Xu, Q. J. Org. Chem. 2015, 80, 8677.
      (b) Yu, L.; Han, Z.; Ding, Y. Org. Process Res. Dev. 2016, 20, 2124.
      (c) Wang, Q.; Jing, X.; Han, J.; Yu, L.; Xu, Q. Mater. Lett. 2018, 215, 65.
      (d) Zhang, D.; Deng, X.; Zhang, Q.; Han, J.; Yu, L. Mater. Lett. 2019, 234, 216.
      (e) Chen, Y.; Zhang, Q.; Jing, X.; Han, J.; Yu, L. Mater. Lett. 2019, 242, 170.

    6. [6]

      Zhao, H.; Zhu, B.; Sekine, J.; Luo, S.; Yu, H. ACS Appl. Mater. Inter. 2012, 4, 680.

    7. [7]

      Liu, Y.; Tang, D.; Cao, K.; Yu, L.; Han, J.; Xu, Q. J. Catal. 2018, 360, 250.

    8. [8]

      (a) Chen, C.; Cao, Y.; Wu, X.; Cai, Y.; Liu, J.; Xu, L.; Ding, K. Chin. Chem. Lett. 2020, 31, 1078.
      (b) Cao, H.; Qian, R.; Yu, L. Catal. Sci. Technol. 2020, 10, 3113.
      (c) Liu, K.; Deng, J.; Zeng, T.; Chen, X.; Huang, Y.; Cao, Z.; Lin, Y.; He, W. Chin. Chem. Lett. 2020, 31, 1868.
      (d) Zheng, Y.; Wu, A.; Ke, Y.; Cao, H.; Yu, L. Chin. Chem. Lett. 2019, 30, 937.
      (e) Cao, H.; Zhu, B.; Yang, Y.; Xu, L.; Yu, L.; Xu, Q. Chin. J. Catal. 2018, 39, 899.

    9. [9]

      Gao, G.; Han, J.; Yu, L.; Xu, Q. Synlett 2019, 30, 1703.

    10. [10]

    11. [11]

      (a) Johansson Seechurn, C. C. C.; Parisel, S. L.; Colacot, T. J. J. Org. Chem. 2011, 76, 7918.
      (b) Chen, Y.; Hu, L.; Liang, L.; Guo, F.; Yang Y.; Zhou, B. J. Org. Chem. 2020, 85, 2048.
      (c) Elbert, B. L.; Farley, A. J. M.; Gorman, T. W.; Johnson, T. C.; Genicot, C.; Lallemand, B.; Pasau, P.; Flasz, J.; Castro, J. L.; MacCoss, M.; Paton, R. S.; Schofield, C. J.; Smith, M. D.; Willis, M. C.; Dixon, D. J. Chem.-Eur. J. 2017, 23, 14733.

  • 加载中
    1. [1]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    2. [2]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    3. [3]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    4. [4]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    5. [5]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    6. [6]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    7. [7]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    8. [8]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    9. [9]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    10. [10]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    11. [11]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    12. [12]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    13. [13]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    14. [14]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    15. [15]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    16. [16]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    19. [19]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    20. [20]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

Metrics
  • PDF Downloads(2)
  • Abstract views(1414)
  • HTML views(213)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return