Citation: Sun Mingli, Zhang Jiajun, Zhang Yicheng, Li Pinhua, Wang Lei. A Silver-Catalyzed Functionalization of 1-Bromoalkynes: Highly Regio-and Stereo-selective Synthesis of (Z)-β-Bromo-1-arylvinyl Aryl Esters[J]. Chinese Journal of Organic Chemistry, ;2020, 40(8): 2419-2425. doi: 10.6023/cjoc202003038 shu

A Silver-Catalyzed Functionalization of 1-Bromoalkynes: Highly Regio-and Stereo-selective Synthesis of (Z)-β-Bromo-1-arylvinyl Aryl Esters

  • Corresponding author: Zhang Yicheng, lbqzhych@163.com Wang Lei, leiwang@chnu.edu.cn
  • Those authors contributed equally to this work.
  • Received Date: 15 March 2020
    Revised Date: 18 May 2020
    Available Online: 27 May 2020

    Fund Project: National Natural Science Foundation of China 21772062Project supported by the National Natural Science Foundation of China (No. 21772062)

Figures(2)

  • A silver-catalyzed functionalization of 1-bromoalkynes for the highly regio-and stereo-selective synthesis of (Z)-β-bromo-1-arylvinyl aryl esters was developed. In the presence of Ag2O as a catalyst, and Et3N as a base, the reactions of 1-bromoalkynes with commercially available aromatic carboxylic acids underwent smoothly to afford the corresponding (Z)-β-bromo-1-arylvinyl aryl esters in good yields. The investigation indicates that Ag2O plays an important role in the reaction.
  • 加载中
    1. [1]

      (a) Corbet, J.-P.; Mignani. G. Chem. Rev. 2006, 106, 2651.
      (b) Cahiez, G.; Moyeux, A. Chem. Rev. 2003, 103, 4283.
      (c) Amatore, C.; Jutand, A. Acc. Chem. Res. 2000, 33, 314.
      (d) Bettinger, H. F.; Filthaus, M. J. Org. Chem. 2007, 72, 9750.
      (e) Uchiyama, M.; Furuyama, T. Kobayashi, M.; Matsumoto, Y.; Tanaka, K. J. Am. Chem. Soc. 2006, 128, 8404.
      (f) Boukouvalas, J.; Loach, R. P. J. Org. Chem. 2008, 73, 8109.

    2. [2]

      (a) Goossen, L. J.; Paetzold, J. Angew. Chem., Int. Ed. 2004, 43, 1095.
      (b) Zhang, D.; Ready, J. M. Org. Lett. 2005, 7, 5681.
      (c) DeBergh, J. R.; Spivey, K. M.; Ready, J. M. J. Am. Chem. Soc. 2008, 130, 7828.
      (d) Tang, W.; Liu, D.; Zhang, X. Org. Lett. 2003, 5, 205.

    3. [3]

      (a) Kowalski, C. J.; Haque, M. S. J. Org. Chem. 1985, 50, 5140.
      (b) Kowalski, C. J.; O'Dowd, M. L.; Burke, M. C.; Fields, K. W. J. Am. Chem. Soc. 1980, 102, 5411.
      (c) Kowalski, C. J.; Haque, M. S.; Fields, K. W. J. Am. Chem. Soc. 1985, 107, 1429.

    4. [4]

      Barluenga, J.; Rodríguez, M. A.; Campos, P. J. J. Org. Chem. 1990, 55, 3104.  doi: 10.1021/jo00297a027

    5. [5]

      Chen, Z.; Li, J.; Jiang, H.; Zhu, S.; Li, Y.; Qi, C. Org. Lett. 2010, 12, 3262.  doi: 10.1021/ol101251n

    6. [6]

      Jiang, G.; Li, J. X.; Zhu, C.; Wu, W.; Jiang, H. Org. Lett. 2017, 19, 4440.  doi: 10.1021/acs.orglett.7b01919

    7. [7]

      (a) Kowalski, C. J.; Creary, X.; Rollin, A. J.; Burke, M. C. J. Org. Chem. 1978, 43, 2601.
      (b) Pincock, J. A.; Yates, K. Can. J. Chem. 1970, 48, 3332.
      (c) Chawla, R.; Singh, A. K.; Yadav, L. D. S. Synlett 2013, 1558.
      (d) Xia, X.-F.; Gu, Z.; Liu, W.; Wang, N.; Wang, H.; Xia, Y.; Gao, H.; Liu, X. Org. Biomol. Chem. 2014, 12, 9909.
      (e) Wang, Y.; Lu, B.; Zhang, L. Chem. Commun. 2010, 46, 9179.

    8. [8]

      (a) Wu, W.; Jiang, H. Acc. Chem. Res. 2014, 47, 2483.
      (b) Trofimov, A.; Chernyak, N.; Gevorgyan, V. J. Am. Chem. Soc. 2008, 130, 13538.
      (c) Yoo, W.-J.; Allen, A.; Villeneuve, K.; Tam, W. Org. Lett. 2005, 7, 5853.
      (d) Hein, J. E.; Tripp, J. C.; Krasnova, L. B.; Sharpless, K. B.; Fokin, V. V. Angew. Chem., Int. Ed. 2009, 48, 8018.
      (e) Crossley, J. A.; Browne, D. L. J. Org. Chem. 2010, 75, 5414.
      (f) Xie, L.; Wu, Y.; Yi, W.; Zhu, L.; Xiang, J.; He, W. J. Org. Chem. 2013, 78, 9190.
      (g) Wezeman, T.; Zhong, S.; Nieger, M.; Bräse, S. Angew. Chem., Int. Ed. 2016, 55, 3823.
      (h) Alcaide, B.; Almendros, P.; Milla, C. L. Adv. Synth. Catal. 2017, 359, 2630.

    9. [9]

      (a) Rasolofonjatovo, E.; Theeramunkong, S.; Bouriaud, A.; Kolodych, S.; Chaumontet, M.; Taran, F. Org. Lett. 2013, 15, 4698.
      (b) Ye, Q.; Cheng, T.; Zhao, Y.; Zhao, J.; Jin R.; Liu, G. ChemCatChem 2015, 7, 1801.
      (c) Zhu, G.; Chen, D.; Wang, Y.; Zheng, R. Chem. Commun. 2012, 48, 5796.
      (d) Sauermann, N.; Gonzalez, M. J.; Ackermann, L. Org. Lett. 2015, 17, 5316.
      (e) Huang, H.-Y.; Cheng, L.; Liu, J.-J.; Wang, D.; Liu, L.; Li, C.-J. J. Org. Chem. 2017, 82, 2656.
      (f) Ji, F.; Li, X.; Wu, W.; Jiang, H. J. Org. Chem. 2014, 79, 11246.
      (g) Zeng, X.; Liu, S.; Shi, Z.; Xu, B. Org. Lett. 2016, 18, 4770.
      (h) Kreuzahler, M.; Daniels, A.; Wölper, C.; Haberhauer, G. J. Am. Chem. Soc. 2019, 141, 1337.
      (i) Lyu, X.-L.; Huang, S.-S.; Song, H.-J.; Liu, Y.-X.; Wang, Q.-M. RSC Adv. 2019, 9, 36213.
      (j) Pan, R.; Shi, C.; Zhang, D.; Tian, Y.; Guo, S.; Yao, H.; Lin, A. Org. Lett. 2019, 21, 8915.
      (k) Zeng, X.; Liu, S.; Hammond, G. B.; Xu, B. ACS Catal. 2018, 8, 904.

    10. [10]

      (a) Li, Y.; Liu, X.; Ma, D.; Liu, B.; Jiang, H. Adv. Synth. Catal. 2012, 354, 2683.
      (b) Zhao, M.; Ming, L.; Tang, J.; Zhao, X. Org. Lett. 2016, 18, 416.
      (c) Herrera, A. G.; Nahra, F.; Brill, M.; Nolan, S. P.; Cazin, C. S. J. ChemCatChem. 2016, 8, 3381.

    11. [11]

      (a) Chen, Z.; Jiang, H.; Li, Y.; Qi, C. Chem. Commun. 2010, 46, 8049.
      (b) Kawaguchi, S.-I.; Gonda, Y.; Masuno, H.; Thivũ, H.; Yamaguchi, K.; Shinohara, H.; Sonoda, M.; Ogawa, A. Tetrahedron Lett. 2014, 55, 6779.

    12. [12]

      Liste, P. J. G.; Francos, J.; Garrido, S. E. G.; Cadierno, V. J. Org. Chem. 2017, 82, 1507.  doi: 10.1021/acs.joc.6b02712

    13. [13]

      Li, Y.; Zhao, J.; Chen, H.; Liu, B.; Jiang, H. Chem. Commun. 2012, 48, 3545.  doi: 10.1039/c2cc17717j

    14. [14]

      (a) Jiang, G.; Zhu, C.; Li, J.; Wu, W.; Jiang, H. Adv. Synth. Catal. 2017, 359, 1208.
      (b) Zeng, X.; Chen, B.; Lu, Z.; Hammond, G. B.; Xu, B. Org. Lett. 2019, 21, 2772.

    15. [15]

      Wang, S.; Li, P.; Yu, L.; Wang, L. Org. Lett. 2011, 13, 5968.  doi: 10.1021/ol202383z

    16. [16]

      (a) Chen, L.; Li, H.; Li, P.; Wang, L. Org. Lett. 2016, 18, 3646.
      (b) Tan, H.; Li, H.; Ji, W.; Wang, L. Angew. Chem., Int. Ed. 2015, 54, 8374.
      (c) Ni, K.; Meng, L.-G.; Wang, K.; Wang, L. Org. Lett. 2018, 20, 2245.
      (d) Ni, K.; Meng, L.-G.; Ruan, H.; Wang, L. Chem. Commun. 2019, 55, 8438.

    17. [17]

      The X-ray single crystal structure of (Z)-2-bromo-1-phenylvinyl 4-nitrobenzoate (3j, CCCD: 1990480).

  • 加载中
    1. [1]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    2. [2]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    3. [3]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    4. [4]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    5. [5]

      Guang XuCuiju ZhuXiang LiKexin ZhuHao Xu . Copper-catalyzed asymmetric [4+1] annulation of yne–allylic esters with pyrazolones. Chinese Chemical Letters, 2025, 36(4): 110114-. doi: 10.1016/j.cclet.2024.110114

    6. [6]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    7. [7]

      Shaoming DongYiming NiuYinghui PuYongzhao WangBingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525

    8. [8]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    9. [9]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    10. [10]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    11. [11]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    12. [12]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    13. [13]

      Hua LiuJian ZhaoQi LiXiang-Yu ZhangZhi-Wei ZhengKun HuangDa-Bin QinBin Zhao . Indium-captured zirconium-porphyrin frameworks displaying rare multi-selectivity for catalytic transfer hydrogenation of aldehydes and ketones. Chinese Chemical Letters, 2025, 36(6): 110593-. doi: 10.1016/j.cclet.2024.110593

    14. [14]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    15. [15]

      Xiujuan WangYijie WangLuyun CuiWenqiang GaoXiao LiHong LiuWeijia ZhouJingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031

    16. [16]

      Wenya Jiang Jianyu Wei Kuan-Guan Liu . Atomically precise superatomic silver nanoclusters stabilized by O-donor ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100371-100371. doi: 10.1016/j.cjsc.2024.100371

    17. [17]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    18. [18]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    19. [19]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    20. [20]

      Lin Zhang Chaoran Li Thongthai Witoon Xingda An Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456

Metrics
  • PDF Downloads(9)
  • Abstract views(1665)
  • HTML views(186)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return