Citation: Gao Ying, Qin Chengyuan, Nie Yong, Liu Wei, Li Tianrui, Jiang Xuchuan. Recent Progress in Aggregation-Induced Emission-Active Organic Small Molecule Inorganic Nanocomposites[J]. Chinese Journal of Organic Chemistry, ;2020, 40(8): 2254-2274. doi: 10.6023/cjoc202003036 shu

Recent Progress in Aggregation-Induced Emission-Active Organic Small Molecule Inorganic Nanocomposites

  • Corresponding author: Nie Yong, chm_niey@ujn.edu.cn Jiang Xuchuan, ism_jiangxc@ujn.edu.cn
  • Received Date: 14 March 2020
    Revised Date: 12 May 2020
    Available Online: 25 May 2020

    Fund Project: the Science and Technology Program of University of Jinan XKY1906the Natural Science Foundation of Shandong Province ZR2017LB008Project supported by the Natural Science Foundation of Shandong Province (No. ZR2017LB008), the Science and Technology Program of University of Jinan (No. XKY1906) and the Shandong Shenna Smart Advanced Materials Co., Ltd

Figures(9)

  • Fluorescent organic-inorganic nanocomposites have attracted more and more attention in the fields of chemical and biological sensing, biological imaging, energy materials, etc., due to their simple preparation, good biocompatibility and excellent imaging performance. Fluorescence quenching often occurs when traditional fluorescent organic small molecules are combined with inorganic materials, however, organic molecules with aggregation-induced emission (AIE) properties, which show high luminescence quantum yields in the aggregated state, provide opportunities for fluorescent organic-inorganic nanocomposites. Because of the unique advantages of the AIE fluorophore-functionalized inorganic nanomaterials, a great deal of research has been carried out on the design, synthesis and applications of such composite materials. The recent progress in the organic-inorganic composites of AIE-active organic small molecules and various types of inorganic nanomaterials (metal nanoparticles, perovskites, layered materials, oxides and sulfides, etc.) is summarized. In particular, the typical applications of these nanocomposites in chemical sensing, biosensing, bioimaging, drug transport, catalysis, photothermal therapy and energy materials are summarized. The prospects of these AIE-active organic-inorganic nanocomposites are also discussed.
  • 加载中
    1. [1]

      Huang, H. Y.; Liu, M. Y.; Jiang, R. M.; Chen, J. Y.; Mao, L. C.; Wen, Y. Q.; Tian, J. W.; Zhou, N. G.; Zhang, X. Y.; Wei, Y. J. Colloid Interface Sci. 2018, 513, 198.  doi: 10.1016/j.jcis.2017.11.009

    2. [2]

      Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Chem. Rev. 2016, 116, 10346.  doi: 10.1021/acs.chemrev.5b00703

    3. [3]

      Dai, Q. Q.; Duty, C. E.; Hu, M. Z. Small 2010, 6, 1577.  doi: 10.1002/smll.201000144

    4. [4]

      Zou, L.; Gu, Z. H.; Sun, M. Toxicol. Environ. Chem. 2015, 97, 477.  doi: 10.1080/02772248.2015.1050201

    5. [5]

      Smith, A. M.; Duan, H. W.; Mohs, A. M.; Nie, S. M. Adv. Drug Delivery Rev. 2008, 60, 1226.  doi: 10.1016/j.addr.2008.03.015

    6. [6]

      Pan, Y.; Chang, T.; Marcq, G.; Liu, C. H.; Kiss, B.; Rouse, R.; Mach, K. E.; Cheng, Z.; Liao, J. C. Sci. Rep. 2017, 7, 9309.  doi: 10.1038/s41598-017-08591-w

    7. [7]

      Sokolov, I.; Volkov, D. O. J. Mater. Chem. 2010, 20, 4247.  doi: 10.1039/b923135h

    8. [8]

      Sokolov, I.; Naik, S. Small 2008, 4, 934.  doi: 10.1002/smll.200700236

    9. [9]

      Sarkar, K.; Salinas, Y.; Campos, I.; Martínez-Máñez, R.; Marcos, M. D.; Sancenón, F.; Amorós, P. ChemPlusChem 2013, 78, 684.  doi: 10.1002/cplu.201300140

    10. [10]

      Thomas, S. W.; Joly, G. D.; Swager, T. M. Chem. Rev. 2007, 107, 1339.  doi: 10.1021/cr0501339

    11. [11]

      Tani, T.; Mizoshita, N.; Inagaki, S. J. Mater. Chem. 2009, 19, 4451.  doi: 10.1039/b820691k

    12. [12]

      Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Cheng, L.; Chen, H. Y.; Qiu, C. F.; Kwok, H. S.; Zhan, X. W.; Liu, Y. Q.; Zhu, D. B.; Tang, B. Z. Chem. Commun. 2001, 1740.  doi: 10.1039/B105159H

    13. [13]

      Zhao, Z. J.; Chan, C. Y. K.; Chen, S. M.; Deng, C. M.; Lam, J. W. Y.; Jim, C. K. W.; Hong, Y. N.; Lu, P.; Chang, Z. F.; Chen, X. P.; Lu, P.; Kwok, H. S.; Qiu, H. Y.; Tang, B. Z. J. Mater. Chem. 2012, 22, 4527.  doi: 10.1039/c2jm14914a

    14. [14]

      Li, Z. Z.; Huo, Y. P.; Yang, X. H.; Ji, S. M. Chin. J. Org. Chem. 2016, 36, 2317(in Chinese).  doi: 10.6023/cjoc201604023

    15. [15]

      Ding, D.; Li, K.; Liu, B.; Tang, B. Z. Acc. Chem. Res. 2013, 46, 2441.  doi: 10.1021/ar3003464

    16. [16]

      Huang, Y. Z.; Lei, L. Q.; Zheng, C.; Wei, B.; Zhao, Z. J.; Qin, A. J.; Hu, R. R.; Tang, B. Z. Acta Chim. Sinica 2016, 74, 885(in Chinese).  doi: 10.6023/A16080435

    17. [17]

      Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z. Chem. Soc. Rev. 2011, 40, 5361.  doi: 10.1039/c1cs15113d

    18. [18]

      Guan, X. L.; Li, Z. F.; Wang, L.; Liu, M. N.; Wang, K. L.; Yang, X. Q.; Li, Y. L.; Hu, L. L.; Zhao, X. L.; Lai, S. J.; Lei, Z. Q. Acta Chim. Sinica 2019, 77, 1268(in Chinese).
       

    19. [19]

      Yang, J.; Li, Z. Chin. J. Org. Chem. 2019, 39, 3304(in Chinese).
       

    20. [20]

      Jiao, J. M.; Liu, X. H.; Mao, X. R.; Li, J. F.; Cheng, Y. X.; Zhu, C. J. New J. Chem. 2013, 37, 317.  doi: 10.1039/C2NJ40739F

    21. [21]

      Sun, J. B.; Zhang, G. H.; Jia, X. Y.; Xue, P. C.; Jia, J. H.; Lu, R. Acta Chim. Sinica 2016, 74, 165(in Chinese).

    22. [22]

      Peng, B. Y.; Xu, S. D.; Chi, Z. G.; Zhang, X. Q.; Zhang, Y.; Xu, J. R. Prog. Chem. 2013, 25, 1805(in Chinese).  doi: 10.7536/pc130329

    23. [23]

      Zhang, H. K.; Liu, J. K.; Du, L. L.; Ma, C.; Leung, N. L. C.; Niu, Y. L.; Qin, A. J.; Sun, J. Z.; Peng, Q.; Sung, H. H. Y.; Williams, I. D.; Kwok, R. T. K.; Lam, J. W. Y.; Wong, K. S.; Phillips, D. L.; Tang, B. Z. Mater. Chem. Front. 2019, 3, 1143.  doi: 10.1039/C9QM00156E

    24. [24]

      Leung, N. L. C.; Xie, N.; Yuan, W. Z.; Liu, Y.; Wu, Q. Y.; Peng, Q.; Miao, Q.; Lam, J. W. Y.; Tang, B. Z. Chem.-Eur. J. 2014, 20, 15349.  doi: 10.1002/chem.201403811

    25. [25]

      Tu, Y. J.; Liu, J. K.; Zhang, H. K.; Peng, Q.; Lam, J. W. Y.; Tang, B. Z. Angew. Chem., Int. Ed. 2019, 58, 14911.  doi: 10.1002/anie.201907522

    26. [26]

      Yao, L.; Zhang, S. T.; Wang, R.; Li, W. J.; Shen, F. Z.; Yang, B.; Ma, Y. G. Angew. Chem., Int. Ed. 2014, 53, 2119.  doi: 10.1002/anie.201308486

    27. [27]

      Li, D. D. Inorg. Chem. Front. 2019, 6, 1613.

    28. [28]

      Li, D. D.; Yu, J. H. Small 2016, 12, 6478.  doi: 10.1002/smll.201601484

    29. [29]

      Mao, L. C.; Zhang, X. Y.; Wei, Y. Chin. J. Polym. Sci. 2019, 37, 340.  doi: 10.1007/s10118-019-2208-1

    30. [30]

      Yan, L. L.; Zhang, Y.; Xu, B.; Tian, W. J. Nanoscale 2016, 8, 2471.  doi: 10.1039/C5NR05051K

    31. [31]

      He, X. W.; Zhao, Z.; Xiong, L. H.; Gao, P. F.; Peng, C.; Li, R. S.; Xiong, Y.; Li, Z.; Sung, H. H.-Y.; Williams, I. D.; Kwok, R. T. K.; Lam, J. W. Y.; Huang, C. Z.; Ma, N.; Tang, B. Z. J. Am. Chem. Soc. 2018, 140, 6904.  doi: 10.1021/jacs.8b02350

    32. [32]

      He, X. W.; Peng, C.; Qiang, S. J.; Xiong, L. H.; Zhao, Z.; Wang, Z. Y.; Kwok, R. T. K.; Lam, J. W. Y.; Ma, N.; Tang, B. Z. Biomaterials 2020, 238, 119834.  doi: 10.1016/j.biomaterials.2020.119834

    33. [33]

      He, X. W.; Yin, F.; Wang, D. Y.; Xiong, L. H.; Kwok, R. T. K.; Gao, P. F.; Zhao, Z.; Lam, J. W. Y.; Yong, K. T.; Li, Z. G.; Tang, B. Z. Nano Lett. 2019, 19, 2272.  doi: 10.1021/acs.nanolett.8b04677

    34. [34]

      Wang, C.; Li, Y.; Xu, Q. J.; Luo, L. Opt. Mater. 2017, 72, 710.  doi: 10.1016/j.optmat.2017.06.022

    35. [35]

      Zhang, J. M.; Li, C.; Zhang, X.; Huo, S. D.; Jin, S. B.; An, F. F.; Wang, X. D.; Xue, X. D.; Okeke, C. I.; Duan, G. Y.; Guo, F. G.; Zhang, X. H.; Hao, J. F.; Wang, P. C.; Zhang, J. C.; Liang, X. J. Biomaterials 2015, 42, 103.  doi: 10.1016/j.biomaterials.2014.11.053

    36. [36]

      Pellet, N.; Gao, P.; Gregori, G.; Yang, T.-Y.; Nazeeruddin, M. K.; Maier, J.; Grätzel, M. Angew. Chem., Int. Ed. 2014, 53, 3151.  doi: 10.1002/anie.201309361

    37. [37]

      Ogomi, Y.; Morita, A.; Tsukamoto, S.; Saitho, T.; Fujikawa, N.; Shen, Q.; Toyoda, T.; Yoshino, K.; Pandey, S. S.; Ma, T. L.; Hayase, S. J. Phys. Chem. Lett. 2014, 5, 1004.  doi: 10.1021/jz5002117

    38. [38]

      Liu, Y. C.; Yang, Z.; Cui, D.; Ren, X. D.; Sun, J. K.; Liu, X. J.; Zhang, J. R.; Wei, Q. B.; Fan, H. B.; Yu, F. Y.; Zhang, X.; Zhao, C. M.; Liu, S. Z. Adv. Mater. 2015, 27, 5176.  doi: 10.1002/adma.201502597

    39. [39]

      Ran, C. X.; Chen, Y. H.; Gao, W. Y.; Wang, M. Q.; Dai, L. M. J. Mater. Chem. A 2016, 4, 8566.  doi: 10.1039/C6TA03605H

    40. [40]

      Zhang, F.; Zhong, H. Z.; Chen, C.; Wu, X. G.; Hu, X. M.; Huang, H. L.; Han, J. B.; Zou, B. S.; Dong, Y. P. ACS Nano 2015, 9, 4533.  doi: 10.1021/acsnano.5b01154

    41. [41]

      Zhang, F.; Zhou, T. Y.; Liu, G. G.; Shi, J. B.; Zhong, H. Z.; Dong, Y. P. Faraday Discuss. 2017, 196, 91.  doi: 10.1039/C6FD00167J

    42. [42]

      Chen, Z. F.; Chen, Z. Q.; Li, H.; Zhao, X. J.; Zhu, M. Q.; Wang, M. K. Adv. Opt. Mater. 2018, 6, 1800221.  doi: 10.1002/adom.201800221

    43. [43]

      Huang, B.; Fu, Q. X.; Ai, Q. Y.; Tan, L. C.; Chen, L.; Chen, Y. W. Mater. Chem. Front. 2017, 1, 1179.  doi: 10.1039/C6QM00210B

    44. [44]

      Costa, F. R.; Leuteritz, A.; Wagenknecht, U.; Auf der Landwehr, M.; Jehnichen, D.; Haeussler, L.; Heinrich, G. Appl. Clay Sci. 2009, 44, 7.  doi: 10.1016/j.clay.2008.12.020

    45. [45]

      Mohanambe, L.; Vasudevan, S. J. Phys. Chem. B 2005, 109, 22523.  doi: 10.1021/jp053925f

    46. [46]

      Lee, J. H.; Chang, J.; Cha, J.-H.; Jung, D.-Y.; Kim, S. S.; Kim, J. M. Chem.-Eur. J. 2010, 16, 8296.  doi: 10.1002/chem.201000703

    47. [47]

      Tagaya, H.; Kuwahara, T.; Sato, S.; Kadokawa, J.; Karasu, M.; Chiba, K. J. Mater. Chem. 1993, 3, 317.  doi: 10.1039/jm9930300317

    48. [48]

      Iijima, M.; Kobayakawa, M.; Yamazaki, M.; Ohta, Y.; Kamiya, H. J. Am. Chem. Soc. 2009, 131, 16342.  doi: 10.1021/ja906655r

    49. [49]

      Schmidt, D. F.; Giannelis, E. P. Chem. Mater. 2010, 22, 167.  doi: 10.1021/cm9026978

    50. [50]

      Guan, W. J.; Wang, S.; Lu, C.; Tang, B. Z. Nat. Commun. 2016, 7, 11811.  doi: 10.1038/ncomms11811

    51. [51]

      Li, W. L.; Yao, W.; Tebyetekerwa, M.; Tang, J. J.; Yang, S. Y.; Zhu, M. F.; Hu, R.; Qin, A. J.; Tang, B. Z.; Xu, Z. X. J. Mater. Chem. C 2018, 6, 7003.  doi: 10.1039/C8TC01949E

    52. [52]

      Irie, M.; Fukaminato, T.; Sasaki, T.; Tamai, N.; Kawai, T. Nature 2002, 420, 759.  doi: 10.1038/420759a

    53. [53]

      Sagara, Y.; Yamane, S.; Mutai, T.; Araki, K.; Kato, T. Adv. Funct. Mater. 2009, 19, 1869.  doi: 10.1002/adfm.200801726

    54. [54]

      Li, Z.; Lu, J.; Qin, Y. M.; Li, S. D.; Qin, S. H. J. Mater. Chem. C 2013, 1, 5944.  doi: 10.1039/c3tc31164c

    55. [55]

      Zhang, L. J.; Ge, J.; Lu, C.; Shi, W. Y. Sens. Actuators, B 2018, 268, 519.  doi: 10.1016/j.snb.2018.04.145

    56. [56]

      Zhao, Y. B.; Lin, H. Y.; Chen, M. X.; Yan, D. P. Ind. Eng. Chem. Res. 2014, 53, 3140.  doi: 10.1021/ie404054v

    57. [57]

      Tian, R.; Zhong, J. P.; Lu, C.; Duan, X. Chem. Sci. 2018, 9, 218.  doi: 10.1039/C7SC03897F

    58. [58]

      Li, D. D.; Miao, C. L.; Wang, X. D.; Yu, X. H.; Yu, J. H.; Xu, R. R. Chem. Commun. 2013, 49, 9549.  doi: 10.1039/c3cc45041d

    59. [59]

      Li, D. D.; Zhang, Y. P.; Zhou, B. B. J. Solid State Chem. 2015, 225, 427.  doi: 10.1016/j.jssc.2015.01.025

    60. [60]

      Xu, X. J.; Lv, W.; Huang, J.; Li, J. J.; Tang, R. L.; Yan, J. W.; Yang, Q. H.; Qin, J. G.; Li, Z. RSC Adv. 2012, 2, 7042.  doi: 10.1039/c2ra20460f

    61. [61]

      Zhu, Z. F.; Qian, J.; Zhao, X. Y.; Qin, W.; Hu, R. R.; Zhang, H. Q.; Li, D. Y.; Xu, Z. P.; Tang, B. Z.; He, S. L. ACS Nano 2016, 10, 588.  doi: 10.1021/acsnano.5b05606

    62. [62]

      Sun, X. H.; Zebibula, A.; Dong, X. B.; Zhang, G. X.; Zhang, D. Q.; Qian, J.; He, S. L. ACS Appl. Mater. Interfaces 2018, 10, 25037.  doi: 10.1021/acsami.8b05546

    63. [63]

      Qin, M. M.; Xu, Y. X.; Gao, H.; Han, G. Y.; Cao, R.; Guo, P. L.; Feng, W.; Chen, L. ACS Appl. Mater. Interfaces 2019, 11, 35255.  doi: 10.1021/acsami.9b12421

    64. [64]

      Mahtab, F.; Lam, J. W. Y.; Yu, Y.; Liu, J. Z.; Yuan, W. Z.; Lu, P.; Tang, B. Z. Small 2011, 7, 1448.  doi: 10.1002/smll.201002195

    65. [65]

      Kumar, R.; Roy, I.; Ohulchanskyy, T. Y.; Goswami, L. N.; Bonoiu, A. C.; Bergey, E. J.; Tramposch, K. M.; Maitra, A.; Prasad, P. N. ACS Nano 2008, 2, 449.  doi: 10.1021/nn700370b

    66. [66]

      Kim, S.; Pudavar, H. E.; Bonoiu, A.; Prasad, P. N. Adv. Mater. 2007, 19, 3791.  doi: 10.1002/adma.200700098

    67. [67]

      Kim, S.; Ohulchanskyy, T. Y.; Pudavar, H. E.; Pandey, R. K.; Prasad, P. N. J. Am. Chem. Soc. 2007, 129, 2669.  doi: 10.1021/ja0680257

    68. [68]

      Zhu, Z. F.; Zhao, X. Y.; Qin, W.; Chen, G. D.; Qian, J.; Xu, Z. P. Sci. China:Chem. 2013, 56, 1247.  doi: 10.1007/s11426-013-4943-4

    69. [69]

      Mao, L. C.; Liu, X. H.; Liu, M. Y.; Huang, L.; Xu, D. Z.; Jiang, R. M.; Huang, Q.; Wen, Y. Q.; Zhang, X. Y.; Wei, Y. Appl. Surf. Sci. 2017, 419, 188.  doi: 10.1016/j.apsusc.2017.05.041

    70. [70]

      Mao, L. C.; Liu, M. Y.; Xu, D. Z.; Wan, Q.; Huang, Q.; Jiang, R. M.; Shi, Y. G.; Deng, F. J.; Zhang, X. Y.; Wei, Y. Appl. Surf. Sci. 2017, 403, 396.  doi: 10.1016/j.apsusc.2017.01.234

    71. [71]

      Wang, Y. F.; Che, J.; Zheng, Y. C.; Zhao, Y. Y.; Chen, F.; Jin, S. B.; Gong, N. Q.; Xu, J.; Hu, Z. B.; Liang, X. J. J. Mater. Chem. B 2015, 3, 8775.  doi: 10.1039/C5TB01761K

    72. [72]

      Wang, X. Y.; Song, P. S.; Peng, L.; Tong, A. J.; Xiang, Y. ACS Appl. Mater. Interfaces 2016, 8, 609.  doi: 10.1021/acsami.5b09644

    73. [73]

      Tang, F.; Wang, C.; Wang, J. S.; Wang, X. Y.; Li, L. D. Colloids Surf., A 2015, 480, 38.  doi: 10.1016/j.colsurfa.2015.04.022

    74. [74]

      Feng, G. X.; Wu, W. B.; Xu, S. D.; Liu, B. ACS Appl. Mater. Interfaces 2016, 8, 21193.  doi: 10.1021/acsami.6b06136

    75. [75]

      Faisal, M.; Hong, Y. N.; Liu, J. Z.; Yu, Y.; Lam, J. W. Y.; Qin, A. J.; Lu, P.; Tang, B. Z. Chem.-Eur. J. 2010, 16, 4266.  doi: 10.1002/chem.200901823

    76. [76]

      Zhou, H.; Li, J. S.; Chua, M. H.; Yan, H.; Ye, Q.; Song, J.; Lin, T. T.; Tang, B. Z.; Xu, J. W. Chem. Commun. 2016, 52, 12478.  doi: 10.1039/C6CC07216J

    77. [77]

      Zhang, W. N.; Chang, H.; Ai, J.; Che, S. A.; Duan, Y. Y.; Han, L. Chem. Commun. 2019, 55, 14438.  doi: 10.1039/C9CC06873B

    78. [78]

      Rojas-Sánchez, L.; Sokolova, V.; Riebe, S.; Voskuhl, J.; Epple, M. ChemNanoMat 2019, 5, 436.  doi: 10.1002/cnma.201800509

    79. [79]

      Huang, L.; Yang, S. J.; Chen, J. Y.; Tian, J. W.; Huang, Q.; Huang, H. Y.; Wen, Y. Q.; Deng, F. J.; Zhang, X. Y.; Wei, Y. Mater. Sci. Eng., C 2019, 94, 270.  doi: 10.1016/j.msec.2018.09.042

    80. [80]

      Yan, S. S.; Gao, Z. N.; Xia, Y.; Liao, X. M.; Han, J.; Pan, C. C.; Zhang, Y. F.; Zhai, W. Z. Eur. J. Inorg. Chem. 2018, 1891.

    81. [81]

      Yan, S. S.; Gao, Z. N.; Xia, Y.; Liao, X. M.; Chen, Y. F.; Han, J.; Pan, C. C.; Zhang, Y. F. Inorg. Chem. 2018, 57, 13653.  doi: 10.1021/acs.inorgchem.8b02252

    82. [82]

      Yan, S. S.; Gao, Z. N.; Han, J.; Zhang, Z. Q.; Niu, F.; Zhang, Y. F. J. Mater. Chem. C 2019, 7, 12588.  doi: 10.1039/C9TC03732B

    83. [83]

      Chang, H.; Mao, W. T.; Duan, Y. Y.; Zhang, W. N.; Zhou, C.; Han, L.; Li, L. J.; Che, S. A. J. Mater. Chem. C 2019, 7, 346.  doi: 10.1039/C8TC04644A

    84. [84]

      Zhang, H.; Nie, Y.; Miao, J. L.; Zhang, D. Q.; Li, Y. X.; Liu, G. N.; Sun, G. X.; Jiang, X. C. J. Mater. Chem. C 2019, 7, 3306.  doi: 10.1039/C9TC00511K

    85. [85]

      Mandal, K.; Jana, D.; Ghorai, B. K.; Jana, N. R. ACS Appl. Nano Mater. 2019, 2, 3292.  doi: 10.1021/acsanm.9b00636

    86. [86]

      Wang, L. Y.; Huang, M. Y.; Tang, H.; Cao, D. R.; Zhao, Y. Polymers 2019, 11, 220.  doi: 10.3390/polym11020220

    87. [87]

      Wang, G. F.; Wang, J.; Zhao, L. L.; Zhang, Q.; Lu, Y. Nanomaterials 2019, 9, 154.  doi: 10.3390/nano9020154

    88. [88]

      Ma, X. J.; Zhang, J. Y.; Zhang, Y. D.; Liu, J. W. Langmuir 2019, 35, 16304.  doi: 10.1021/acs.langmuir.9b02823

    89. [89]

      Wu, J. B.; Huang, S. Y.; Gao, Y.; Li, J. L.; Wang, X. Dalton Trans. 2018, 47, 16902.  doi: 10.1039/C8DT03917H

    90. [90]

      Zheng, T. T.; Xu, J. L.; Wang, X. J.; Zhang, J.; Jiao, X. L.; Wang, T.; Chen, D. R. Chem. Commun. 2016, 52, 6922.  doi: 10.1039/C6CC02857H

    91. [91]

      Luo, X.; Liu, X.; Ding, T.; Chen, Z. W.; Wang, L. F.; Wu, K. F. J. Phys. Chem. Lett. 2018, 9, 6334.  doi: 10.1021/acs.jpclett.8b02832

    92. [92]

      Nakamura, S. MRS Bull. 2009, 34, 101.  doi: 10.1557/mrs2009.28

    93. [93]

      Yue, Z. N.; Cheung, Y. F.; Choi, H. W.; Zhao, Z. J.; Tang, B. Z.; Wong, K. S. Opt. Mater. Express 2013, 3, 1906.  doi: 10.1364/OME.3.001906

    94. [94]

      Kim, H. N.; Guo, Z. Q.; Zhu, W. H.; Yoon, J.; Tian, H. Chem. Soc. Rev. 2011, 40, 79.  doi: 10.1039/C0CS00058B

    95. [95]

      Zhou, H.; Ye, Q.; Neo, W. T.; Song, J.; Yan, H.; Zong, Y.; Tang, B. Z.; Hor, T. S. A.; Xu, J. W. Chem. Commun. 2014, 50, 13785.  doi: 10.1039/C4CC06559J

    96. [96]

      Xiang, K.; He, L. J.; Li, Y. M.; Xu, C. H.; Li, S. H. RSC Adv. 2015, 5, 97224.  doi: 10.1039/C5RA18152F

    97. [97]

      Chang, Z. F.; He, B. R.; Wang, H.; Zong, Y. H.; Zhang, X.; Huang, L.; Zhang, S. L.; Zhong, Q. Tetrahedron Lett. 2019, 60, 151125.  doi: 10.1016/j.tetlet.2019.151125

    98. [98]

      Miao, C. L.; Li, D. D.; Zhang, Y. P.; Yu, J. H.; Xu, R. R. Micropo- rous Mesoporous Mater. 2014, 196, 46.  doi: 10.1016/j.micromeso.2014.04.049

    99. [99]

      Li, D. D.; Liu, J. Z.; Kwok, R. T. K.; Liang, Z. Q.; Tang, B. Z.; Yu, J. H. Chem. Commun. 2012, 48, 7167.  doi: 10.1039/c2cc31890c

    100. [100]

      Wang, C.; Li, Q. L.; Wang, B.; Li, D. D.; Yu, J. H. Inorg. Chem. Front. 2018, 5, 2183.  doi: 10.1039/C8QI00622A

    101. [101]

      Liu, L. J.; Zhang, F. L.; Xu, B.; Tian, W. J. J. Mater. Chem. B 2017, 5, 9197.  doi: 10.1039/C7TB02734F

    102. [102]

      Li, D. D.; Zhang, Y. P.; Fan, Z. Y.; Yu, J. H. Chem. Commun. 2015, 51, 13830  doi: 10.1039/C5CC05173H

    103. [103]

      Li, W. L.; Qiu, Z. Y.; Tebyetekerwa, M.; Zhang, J.; Wang, Y.; Gao, T.; Wang, J.; Ding, Y. X.; Xie, Y. X. Prog. Org. Coat. 2019, 127, 8.  doi: 10.1016/j.porgcoat.2018.11.001

    104. [104]

      Lin, Q.; Fan, Y. Q.; Gong, G. F.; Mao, P. P.; Wang, J.; Guan, X. W.; Liu, J.; Zhang, Y. M.; Yao, H.; Wei, T. B. ACS Sustainable Chem. Eng. 2018, 6, 8775.  doi: 10.1021/acssuschemeng.8b01124

    105. [105]

      Johnston, H. J.; Hutchison, G.; Christensen, F. M.; Peters, S.; Hankin, S.; Stone, V. Crit. Rev. Toxicol. 2010, 40, 328.  doi: 10.3109/10408440903453074

    106. [106]

      Yan, N.; He, X. W.; Tang, B. Z.; Wang, W. X. Environ. Sci. Technol. 2019, 53, 5895.  doi: 10.1021/acs.est.9b01156

    107. [107]

      Hao, X. F.; Han, S. H.; Zhu, J. T.; Hu, Y. F.; Chang, L. Y.; Pao, C. W.; Chen, J. L.; Chen, J. M.; Haw, S. C. RSC Adv. 2019, 9, 13567.  doi: 10.1039/C9RA00892F

    108. [108]

      Ren, X. H.; Liu, F. L.; Sun, Z. Z.; Wang, H. Chem. Sens. 2018, 38, 20(in Chinese).
       

    109. [109]

      Xi, W. G.; Gong, Y. M.; Mei, B.; Zhang, X. Z.; Zhang, Y. B.; Chen, B. Y.; Wu, J. Y.; Tian, Y. P.; Zhou, H. P. Sens. Actuators, B 2014, 205, 158.  doi: 10.1016/j.snb.2014.08.068

    110. [110]

      Wang, J.; Zhang, X. M.; Liu, H. B.; Zhang, D.; Nong, H. T.; Wu, P. Y.; Chen, P. X.; Li, D. Spectrochim. Acta, Part A 2020, 227, 117585.  doi: 10.1016/j.saa.2019.117585

    111. [111]

      Liu, J. F.; Qian, Y. Dyes Pigm. 2017, 136, 782.  doi: 10.1016/j.dyepig.2016.09.041

    112. [112]

      Ma, X. Q.; Wang, Y.; Wei, T. B.; Qi, L. H.; Jiang, X. M.; Ding, J. D.; Zhu, W. B.; Yao, H.; Zhang, Y. M.; Lin, Q. Dyes Pigm. 2019, 164, 279.  doi: 10.1016/j.dyepig.2019.01.049

    113. [113]

      Lin, Q.; Guan, X. W.; Fan, Y. Q.; Wang, J.; Liu, L.; Liu, J.; Yao, H.; Zhang, Y. M.; Wei, T. B. New J. Chem. 2019, 43, 2030.  doi: 10.1039/C8NJ03568G

    114. [114]

      Yan, F.; Zhu, Z. C.; Dong, X. B.; Wang, C.; Meng, X. H.; Xie, Y.; Zhang, G. X.; Qiu, D. Langmuir 2018, 34, 7006.  doi: 10.1021/acs.langmuir.7b04215

    115. [115]

      Zhu, Z. C.; Dong, X. B.; Zhang, G. X.; Xiang, J. F.; Qiu, D. Langmuir 2016, 32, 2145.  doi: 10.1021/acs.langmuir.6b00288

    116. [116]

      Schäferling, M. Angew. Chem., Int. Ed. 2012, 51, 3532.  doi: 10.1002/anie.201105459

    117. [117]

      Yao, J.; Yang, M.; Duan, Y. X. Chem. Rev. 2014, 114, 6130.  doi: 10.1021/cr200359p

    118. [118]

      Xu, X. J.; Li, J. J.; Li, Q. Q.; Huang, J.; Dong, Y. Q.; Hong, Y. N.; Yan, J. W.; Qin, J. G.; Li, Z.; Tang, B. Z. Chem.-Eur. J. 2012, 18, 7278.  doi: 10.1002/chem.201103638

    119. [119]

      Li, Q. Q.; Li, Z. Sci. China, Chem. 2015, 58, 1800.  doi: 10.1007/s11426-015-5517-4

    120. [120]

      Li, X.; Ma, K.; Zhu, S. J.; Yao, S. Y.; Liu, Z. Y.; Xu, B.; Yang, B.; Tian, W. J. Anal. Chem. 2014, 86, 298.  doi: 10.1021/ac403629t

    121. [121]

      Xu, X. J.; Huang, J.; Li, J. J.; Yan, J. W.; Qin, J. G.; Li, Z. Chem. Commun. 2011, 47, 12385.  doi: 10.1039/c1cc15735c

    122. [122]

      Kwok, R. T. K.; Geng, J. L.; Lam, J. W. Y.; Zhao, E. G.; Wang, G.; Zhan, R. Y.; Liu, B.; Tang, B. Z. J. Mater. Chem. B 2014, 2, 4134.  doi: 10.1039/C4TB00367E

    123. [123]

      Zhang, S.; Ma, L.; Ma, K.; Xu, B.; Liu, L. J.; Tian, W. J. ACS Omega 2018, 3, 12886.  doi: 10.1021/acsomega.8b01812

    124. [124]

      Ma, L.; Xu, B.; Liu, L. J.; Tian, W. J. Chem. Res. Chin. Univ. 2018, 34, 363.  doi: 10.1007/s40242-018-8072-7

    125. [125]

      Ou, X. W.; Hong, F.; Zhang, Z. Y.; Cheng, Y.; Zhao, Z. J.; Gao, P. C.; Lou, X. D.; Xia, F.; Wang, S. T. Biosens. Bioelectron. 2017, 89, 417.  doi: 10.1016/j.bios.2016.05.035

    126. [126]

      Jiang, T.; Tan, H. Q.; Sun, Y.; Wang, J.; Hang, Y. D.; Lu, N. N.; Yang, J.; Qu, X.; Hua, J. L. Sens. Actuators, B 2018, 261, 115.  doi: 10.1016/j.snb.2017.10.163

    127. [127]

      Tyagi, A.; Chu, K. L.; Abidi, I. H.; Cagang, A. A.; Zhang, Q. C.; Leung, N. L. C.; Zhao, E. G.; Tang, B. Z.; Luo, Z. T. Acta Biomater. 2017, 50, 334.  doi: 10.1016/j.actbio.2016.12.003

    128. [128]

      Wang, H.; Ma, K.; Xu, B.; Tian, W. J. Small 2016, 12, 6613.  doi: 10.1002/smll.201601544

    129. [129]

      Zhang, R. Y.; Cai, X. L.; Feng, G. X.; Liu, B. Faraday Discuss. 2017, 196, 363.  doi: 10.1039/C6FD00169F

    130. [130]

      Li, Q. Y.; Wu, Y. H.; Lu, H. G.; Wu, X. S.; Chen, S.; Song, N.; Yang, Y. W.; Gao, H. ACS Appl. Mater. Interfaces 2017, 9, 10180.  doi: 10.1021/acsami.7b00873

    131. [131]

      Zhang, X. B.; Kong, R. M.; Tan, Q. Q.; Qu, F.; Qu, F. L. Talanta 2017, 169, 1.  doi: 10.1016/j.talanta.2017.03.050

    132. [132]

      Kong, R. M.; Zhang, X. B.; Ding, L.; Yang, D. S.; Qu, F. L. Anal. Bioanal. Chem. 2017, 409, 5757.  doi: 10.1007/s00216-017-0519-z

    133. [133]

      Wu, X. L.; Wang, P. S.; Hou, S. Y.; Wu, P. L.; Xue, J. Talanta 2019, 198, 8.  doi: 10.1016/j.talanta.2019.01.082

    134. [134]

      Huang, X. A.; Zhou, H. P.; Huang, Y. M.; Jiang, H.; Yang, N.; Shahzad, S. A.; Meng, L. J.; Yu, C. Biosens. Bioelectron. 2018, 121, 236.  doi: 10.1016/j.bios.2018.09.023

    135. [135]

      Li, M.; Lam, J. W. Y.; Mahtab, F.; Chen, S. J.; Zhang, W. J.; Hong, Y. N.; Xiong, J.; Zheng, Q. C.; Tang, B. Z. J. Mater. Chem. B 2013, 1, 676.  doi: 10.1039/C2TB00155A

    136. [136]

      Mahtab, F.; Yu, Y.; Lam, J. W. Y.; Liu, J. Z.; Zhang, B.; Lu, P.; Zhang, X. X.; Tang, B. Z. Adv. Funct. Mater. 2011, 21, 1733.  doi: 10.1002/adfm.201002572

    137. [137]

      Wang, Z. L.; Xu, B.; Zhang, L.; Zhang, J. B.; Ma, T. H.; Zhang, J. B.; Fu, X. Q.; Tian, W. J. Nanoscale 2013, 5, 2065.  doi: 10.1039/c2nr33685e

    138. [138]

      Wang, X. H.; Morales, A. R.; Urakami, T.; Zhang, L. F.; Bondar, M. V.; Komatsu, M.; Belfield, K. D. Bioconjugate Chem. 2011, 22, 1438.  doi: 10.1021/bc2002506

    139. [139]

      Li, D. Y.; Qin, W.; Xu, B.; Qian, J.; Tang, B. Z. Adv. Mater. 2017, 29, 1703643.  doi: 10.1002/adma.201703643

    140. [140]

      Khuong Mai, D.; Lee, J.; Min, I.; Vales, P. T.; Choi, K.-H.; Park, J. B.; Cho, S.; Kim, H.-J. Nanomaterials 2018, 8, 728.  doi: 10.3390/nano8090728

    141. [141]

      Li, Y. H.; Liu, R.; Chang, J.; Huang, M. X.; Chang, H. Z.; Miao, Y. Q. Dyes Pigm. 2017, 139, 110.  doi: 10.1016/j.dyepig.2016.12.009

    142. [142]

      Yao, S. K.; Qian, Y. ChemistrySelect 2018, 3, 12367.  doi: 10.1002/slct.201802864

    143. [143]

      Geng, J. L.; Goh, C. C.; Qin, W.; Liu, R. R.; Tomczak, N.; Ng, L. G.; Tang, B. Z.; Liu, B. Chem. Commun. 2015, 51, 13416.  doi: 10.1039/C5CC03603H

    144. [144]

      He, Z. Y.; Jiang, R. M.; Long, W.; Huang, H. Y.; Liu, M. Y.; Feng, Y. L.; Zhou, N. G.; Ouyang, H.; Zhang, X. Y.; Wei, Y. J. Colloid Interface Sci. 2020, 567, 136.  doi: 10.1016/j.jcis.2020.02.009

    145. [145]

      Li, D. D.; Liang, Z. Q.; Chen, J.; Yu, J. H.; Xu, R. R. Dalton Trans. 2013, 42, 9877.  doi: 10.1039/c3dt50243k

    146. [146]

      Wang, D.; Li, D. D. Inorg. Chem. Commun. 2018, 91, 105.  doi: 10.1016/j.inoche.2018.03.014

    147. [147]

      Fan, Z. Y.; Li, D. D.; Yu, X.; Zhang, Y. P.; Cai, Y.; Jin, J. J.; Yu, J. H. Chem.-Eur. J. 2016, 22, 3681.  doi: 10.1002/chem.201504377

    148. [148]

      Li, D. D.; Yu, J. H.; Xu, R. R. Chem. Commun. 2011, 47, 11077.  doi: 10.1039/c1cc14064g

    149. [149]

      Wang, D.; Chen, J.; Ren, L.; Li, Q. L.; Li, D. D.; Yu, J. H. Inorg. Chem. Front. 2017, 4, 468.  doi: 10.1039/C6QI00488A

    150. [150]

      Wang, D.; Zhang, C. K.; Ren, L.; Li, D. D.; Yu, J. H. Inorg. Chem. Front. 2018, 5, 474.  doi: 10.1039/C7QI00575J

    151. [151]

      Li, J.; Liu, K.; Chen, H. Y.; Li, R. Y.; Drechsler, M.; Bai, F.; Huang, J. B.; Tang, B. Z.; Yan, Y. ACS Appl. Mater. Interfaces 2017, 9, 21706.  doi: 10.1021/acsami.7b06306

    152. [152]

      Li, X. S.; Han, J. Y.; Qin, J. C.; Sun, M.; Wu, J. R.; Lei, L. C.; Li, J.; Fang, L.; Yang, Y. W. Chem. Commun. 2019, 55, 14099.  doi: 10.1039/C9CC07115F

    153. [153]

      Lal, S.; Clare, S. E.; Halas, N. J. Acc. Chem. Res. 2008, 41, 1842.  doi: 10.1021/ar800150g

    154. [154]

      Jaque, D.; Martínez Maestro, L.; del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J. L.; Martín Rodríguez, E.; García Solé, J. Nanoscale 2014, 6, 9494.  doi: 10.1039/C4NR00708E

    155. [155]

      Li, Q. L.; Wang, D.; Cui, Y. Z.; Fan, Z. Y.; Ren, L.; Li, D. D.; Yu, J. H. ACS Appl. Mater. Interfaces 2018, 10, 12155.  doi: 10.1021/acsami.7b14566

    156. [156]

      Fan, Z. Y.; Ren, L.; Zhang, W. J.; Li, D. D.; Zhao, G. Q.; Yu, J. H. Inorg. Chem. Front. 2017, 4, 833.  doi: 10.1039/C7QI00046D

    157. [157]

      Wang, K.; Zhuang, J. L.; Chen, L.; Xu, D. Z.; Zhang, X. Y.; Chen, Z. G.; Wei, Y.; Zhang, Y. Q. Colloids Surf., B 2017, 160, 297.  doi: 10.1016/j.colsurfb.2017.09.043

    158. [158]

      Wang, J.; Xu, M. S.; Wang, K.; Chen, Z. G. Colloids Surf., B 2019, 174, 324.  doi: 10.1016/j.colsurfb.2018.11.030

    159. [159]

      Li, J. M.; Leung, C. W. T.; Wong, D. S. H.; Xu, J. B.; Li, R.; Zhao, Y. Y.; Yung, C. Y. Y.; Zhao, E. G.; Tang, B. Z.; Bian, L. M. ACS Appl. Mater. Interfaces 2019, 11, 22074.  doi: 10.1021/acsami.7b00845

    160. [160]

      Zhang, Y. X.; Fu, H.; Liu, D. E.; An, J. X.; Gao, H. J. Nanobiotechnol. 2019, 17, 104.  doi: 10.1186/s12951-019-0523-x

    161. [161]

      Deol, H.; Pramanik, S.; Kumar, M.; Khan, I. A.; Bhalla, V. ACS Catal. 2016, 6, 3771.  doi: 10.1021/acscatal.6b00393

    162. [162]

      Pramanik, S.; Bhalla, V.; Kumar, M. Chem. Commun. 2014, 50, 13533.  doi: 10.1039/C4CC05460A

    163. [163]

      Kang, J. X.; Yu, J.; Li, A. R.; Zhao, D. Y.; Liu, B.; Guo, L.; Tang, B. Z. iScience 2019, 15, 119.  doi: 10.1016/j.isci.2019.04.017

    164. [164]

      Ong, K. H.; Liu, B. Molecules 2017, 22, 897.  doi: 10.3390/molecules22060897

    165. [165]

      Cao, Y. L.; Chen, W.; Sun, H. L.; Wang, D.; Chen, P.; Djurisic, A. B.; Zhu, Y. D.; Tu, B.; Guo, X. G.; Tang, B. Z.; He, Z. B. Sol. RRL 2020, 4, 1900189.  doi: 10.1002/solr.201900189

    166. [166]

      Li, D. D.; Zhang, Y. P.; Fan, Z. Y.; Chen, J.; Yu, J. H. Chem. Sci. 2015, 6, 6097.  doi: 10.1039/C5SC02044A

  • 加载中
    1. [1]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    2. [2]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    3. [3]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    4. [4]

      Hongxia Yan Weixu Feng Junyan Yao Wei Tian Rui Wang . Illuminating the Teaching of Science and Engineering Graduate Courses with “Curriculum Ideology and Politics”. University Chemistry, 2024, 39(6): 122-127. doi: 10.3866/PKU.DXHX202310059

    5. [5]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    6. [6]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    7. [7]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    8. [8]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    9. [9]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    10. [10]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    11. [11]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    12. [12]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    13. [13]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    14. [14]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    15. [15]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    16. [16]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    17. [17]

      Yaofeng Yuan Keyin Ye Chunfa Xu Hong Yan Yuanming Li . Fostering an International Perspective in Postgraduate Student Teaching: A Case Study of the Organic Structure Analysis Course. University Chemistry, 2024, 39(6): 145-150. doi: 10.3866/PKU.DXHX202402024

    18. [18]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    19. [19]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    20. [20]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

Metrics
  • PDF Downloads(39)
  • Abstract views(4267)
  • HTML views(971)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return