Citation: Cheng Xiaohong, Li Shuang, Wang Jingyang, Li Wangnan. "Turn-On" Fluorescent Probe for Hypochlorite: Successful Bioimaging and Real Application in Tap Water[J]. Chinese Journal of Organic Chemistry, ;2020, 40(7): 1941-1947. doi: 10.6023/cjoc202003034 shu

"Turn-On" Fluorescent Probe for Hypochlorite: Successful Bioimaging and Real Application in Tap Water

  • Corresponding author: Cheng Xiaohong, chengxiaohong0807@126.com
  • Received Date: 13 March 2020
    Revised Date: 12 April 2020
    Available Online: 11 May 2020

    Fund Project: the Natural Science Foundation of Hubei Province 2018CFB454Project supported by the Natural Science Foundation of Hubei Province (No. 2018CFB454), the Project of Hubei University of Arts and Science (No. XK2020042) and the Teachers' Scientific Ability Cultivation Foundation of Hubei University of Arts and Science (No. 2020kypyfy031)the Project of Hubei University of Arts and Science XK2020042the Teachers' Scientific Ability Cultivation Foundation of Hubei University of Arts and Science 2020kypyfy031

Figures(8)

  • Taking advantage of the special oxidation property of hypochlorite, two novel coumarin-type fluorescent probes C1 and C2 were synthesized for ClO- detection. Both probes could detect ClO- anions in aqueous solution efficiently with rapid switching-on fluorescent methods. Especially, probe C2 displayed dramatic enhancement in fluorescence emission spectra with the detection limit of 1.8×10-7 mol/L. In addition to its high selectivity for ClO- rather than other common anions and reactive oxygen species, C2 was successfully applied to the bioimaging in HeLa cells with 'turn-on' fluorescent methods. Moreover, probe C2 could be used for the analysis of ClO- levels in tap water and potentially in environmental samples.
  • 加载中
    1. [1]

      (a) Sugiyama, S.; Kugiyama, K.; Aikawa, M.; Nakamura, S.; Ogawa, H.; Libby, P. Thromb. Vasc. Biol. 2004, 24, 1309.
      (b) Pattison, D. I.; Davies, M. J. Chem. Res. Toxicol. 2001, 14, 1453.
      (c) Steinbeck, M. J.; Nesti, L. J.; Sharkey, P. F.; Parvizi, J. J. Orthop. Res. 2007, 25, 1128.
      (d) Aokl, T.; Munemorl, M. Anal. Chem. 1983, 55, 209.

    2. [2]

      (a) Cui, K.; Zhang, D. Q.; Zhang, G. X.; Zhu, D. B. Tetrahedron Lett. 2010, 51, 6052.
      (b) Hwang, J.; Choi, M. G.; Bae, J.; Chang, S.-K. Org. Biomol. Chem. 2011, 9, 7011.
      (c) Kim, T.-Ⅱ.; Park, S.; Choi, Y.; Kim, Y. Chem.-Asian J. 2011, 6, 1358.
      (d) Li, G.; Ji, D. D.; Zhang, S. M.; Li, J. M.; Li, C.; Qiao, R. Z. Sens. Actuators, B 2017, 252, 127.
      (e) Pang, L. F.; Zhou, Y. M.; Gao, W. L.; Song, H. H.; Wang, X.; Wang, Y. RSC Adv. 2016, 6, 105795.
      (f) Zhang, P.; Wang, Y.; Chen, L.; Yin, Y. B. Microchim. Acta 2017, 184, 3781.

    3. [3]

      (a) Zhang, R.; Song, B.; Yuan, J. L. Trends Anal. Chem. 2018, 99, 1.
      (b) Liu, C.; Jiao, X. J.; He, S.; Zhao, L. C.; Zeng, X. S. Talanta 2017, 174, 234.
      (c) Liu, S. R.; Wu, S. P. Org. Lett. 2013, 15, 878.
      (d) Manjare, S. T.; Kim, J.; Lee, Y.; Churchill, D. G. Org. Lett. 2014, 16, 520.
      (e) Qu, Z. J.; Ding, J. X.; Zhao, M. Y.; Li, P. J. Photochem. Photobiol. A 2015, 299, 1.
      (f) Zhang, Y. R.; Zhao, Z. M.; Miao, J. Y.; Zhao, B. X. Sens. Actuators, B 2016, 229, 408.
      (g) Zhang, Z.; Zheng, Y.; Hang, W.; Yan, X.; Zhao, Y. Talanta 2011, 85, 779.
      (h) Shi, L.; Yang S.; Hong, H. J.; Li, Y.; Yu, H. J.; Shao, G.; Zhang, K.; Gong, S. Z. Anal. Chim. Acta 2020, 1094, 122.
      (i) Shi, L.; Yu, H. J.; Zeng, X. Q.; Yang, S.; Gong, S. Z.; Xiang, H.; Zhang K.; Shao G. New J. Chem. 2020, 44, 6232.
      (j) Wei, H. Q.; Zeng, R. J.; Wang, S. L.; Zhang, C. H.; Chen, S.; Zhang, P. S.; Chen, J. Mater. Chem. Front. 2020, 4, 862.
      (k) Ren, J. Y.; Zhang, P. S.; Liu, H.; Zhang, C. H.; Gao, Y.; Cui, J. X.; Chen, J. Sens. Actuators, B 2020, 304, 127299.
      (l) Zhang, P. S.; Wang, H.; Zhang, D.; Zeng, X. Y.; Zeng, R. J.; Xiao, L. H.; Tao, H. W.; Long, Y. F.; Yi, P. G.; Chen, J. Sens. Actuators, B 2018, 255, 2223.
      (m) Zhang, P. S.; Wang, H.; Hong, Y. X.; Yu, M. L.; Zeng, R. J.; Long, Y. F.; Chen, J. Biosens. Bioelectron. 2017, 99, 318.
      (n) Huang, Y.; Zhang, P. S.; Gao, M.; Zeng, F.; Qin, A. J.; Wu, S. Z.; Tang, B. Z. Chem. Commun. 2016, 52, 7288.

    4. [4]

    5. [5]

      (a) Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Chem. Commun. 2001, 37, 1740.
      (b) Chen, J. W.; Xie, Z. L.; Lam, J. W. Y.; Law, C. C. W.; Tang, B. Z. Macromolecules 2003, 36, 1108.
      (c) Wei, B.; Li, W. Z.; Zhao, Z. J.; Qin, A. J.; Hu, R. R.; Tang, B. Z. J. Am. Chem. Soc. 2017, 139, 5075.
      (d) Chen, J.; Law, C. C. W.; Lam, J. W. Y.; Dong, Y.; Lo, S. M. F.; Williams, I. D.; Zhu, D.; Tang, B. Z. Chem. Mater. 2003, 15, 1535.
      (e) Zhao, Z.; Chen, S.; Lam, J. W. Y.; Jim, C. K. W.; Chan, C. Y. K.; Wang, Z.; Lu, P.; Deng, C.; Kwok, H.; Ma, Y.; Tang, B. Z. J. Phys. Chem. C 2010, 114, 7963.

    6. [6]

      Zeng, Q.; Li, Z.; Dong, Y. Q.; Di, C. A.; Qin, A. J.; Hong, Y. N.; Ji, L.; Zhu, Z. C.; Jim Cathy, K. W.; Yu, G.; Li, Q. Q.; Li, Z. A.; Liu, Y. Q.; Qin, J. G.; Tang, B. Z. Chem. Commun. 2007, 43, 70.
       

    7. [7]

      Erdemir, S.; Kocyigit, O.; Karakurt, S. Sens. Actuat., B 2015, 220, 381.  doi: 10.1016/j.snb.2015.05.103

    8. [8]

      Yuan, L.; Lin, W. Y.; Song, J. Z.; Yang, Y. T. Chem. Commun. 2011, 47, 12691.  doi: 10.1039/c1cc15762k

    9. [9]

      Chen, G.; Song, F.; Wang, J.; Yang, Z.; Sun, S.; Fan, J.; Qiang, X.; Wang, X.; Dou B.; Peng, X. J. Chem. Commun. 2012, 48, 2949.  doi: 10.1039/c2cc17617c

    10. [10]

      Williams, A. T. R.; Winfield, S. A.; Miller, J. N. Analyst 1983, 108, 1067.  doi: 10.1039/an9830801067

  • 加载中
    1. [1]

      Wei GAOMeiqi SONGXuan RENJianliang BAIJing SUJianlong MAZhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112

    2. [2]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    3. [3]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    4. [4]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    5. [5]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    6. [6]

      Chuanfeng FanJian GaoYingkai GaoXintong YangGaoning LiXiaochun WangFei LiJin ZhouHaifeng YuYi HuangJin ChenYingying ShanLi Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838

    7. [7]

      Zhixiao XiongShanni QiuYuyu WangHouna DuanYi XiaoYufang XuWeiping ZhuXuhong Qian . Photocalibrated NO release from the zinc ion fluorescent probe based on naphthalimide and its application in living cells. Chinese Chemical Letters, 2025, 36(4): 110002-. doi: 10.1016/j.cclet.2024.110002

    8. [8]

      Wei-Tao DouQing-Wen ZengYan KangHaidong JiaYulian NiuJinglong WangLin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995

    9. [9]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    10. [10]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    11. [11]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    12. [12]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    13. [13]

      Tao LiuXuwei HanXueyi SunWeijie ZhangKe GaoRunan MinYuting TianCaixia Yin . An activated fluorescent probe to monitor NO fluctuation in Parkinson’s disease. Chinese Chemical Letters, 2025, 36(3): 110170-. doi: 10.1016/j.cclet.2024.110170

    14. [14]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    15. [15]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

    16. [16]

      Linfang WangJing LiuMinghao RenWei Guo . A highly sensitive fluorescent HClO probe for discrimination between cancerous and normal cells/tissues. Chinese Chemical Letters, 2024, 35(6): 108945-. doi: 10.1016/j.cclet.2023.108945

    17. [17]

      Yang LiuLeilei ZhangKaixuan LiuLing-Ling WuHai-Yu Hu . Penicillin G acylase-responsive near-infrared fluorescent probe: Unravelling biofilm regulation and combating bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109759-. doi: 10.1016/j.cclet.2024.109759

    18. [18]

      Huamei ZhangJingjing LiuMingyue LiShida MaXucong ZhouAixia MengWeina HanJin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020

    19. [19]

      Pei HuangWeijie ZhangJunping WangFangjun HuoCaixia Yin . Rapid and specific fluorescent probe visualizes dynamic correlation of Cys and HClO in OGD/R. Chinese Chemical Letters, 2025, 36(1): 109778-. doi: 10.1016/j.cclet.2024.109778

    20. [20]

      Lanyun ZhangWeisi WangYu-Qiang ZhaoRui HuangYuxun LuYing ChenLiping DuanYing Zhou . Mechanism study of the molluscicide candidate PBQ on Pomacea canaliculata using a viscosity-sensitive fluorescent probe. Chinese Chemical Letters, 2025, 36(1): 109798-. doi: 10.1016/j.cclet.2024.109798

Metrics
  • PDF Downloads(7)
  • Abstract views(934)
  • HTML views(144)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return