Citation: Wang Xiangyang, Xu Xuetao, Wang Zhenhua, Fang Ping, Mei Tiansheng. Advances in Asymmetric Organotransition Metal-Catalyzed Electrochemistry[J]. Chinese Journal of Organic Chemistry, ;2020, 40(11): 3738-3747. doi: 10.6023/cjoc202003022 shu

Advances in Asymmetric Organotransition Metal-Catalyzed Electrochemistry

  • Corresponding author: Fang Ping, pfang@sioc.ac.cn Mei Tiansheng, mei7900@sioc.ac.cn
  • Received Date: 9 March 2020
    Revised Date: 24 May 2020
    Available Online: 25 May 2020

    Fund Project: Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB20000000), the National Natural Science Foundation of China (Nos. 91956112, 21572245, 21772222, 21772220), and the Program of Shanghai Science and Technology Committee of Shanghai (Nos. 17JC1401200, 18JC1415600)the Strategic Priority Research Program of the Chinese Academy of Sciences XDB20000000the National Natural Science Foundation of China 21772220the National Natural Science Foundation of China 91956112the National Natural Science Foundation of China 21572245the Program of Shanghai Science and Technology Committee of Shanghai 18JC1415600the Program of Shanghai Science and Technology Committee of Shanghai 17JC1401200the National Natural Science Foundation of China 21772222

Figures(12)

  • The recent developments in asymmetric organotransition metal-catalyzed electrochemistry (AOMCE) are summarized. AOMCE processes can be divided into oxidative and reductive variants. In terms of oxidations, asymmetric functionalization of olefins, oxidative kinetic resolution of secondary alcohols or aldehydes, and asymmetric C—H functionalization reactions have been developed. Reductive processes discussed include asymmetric electrochemical carboxylation with carbon dioxide, asymmetric electrochemical decarboxylation, and asymmetric reductive coupling reactions. The combination of chiral ligands, transition-metal catalysts, and electrochemistry provides a novel angle by which to address the longstanding fundamental challenge of stereoinduction in traditional electrochemical organic synthesis.
  • 加载中
    1. [1]

      Kolbe, H. J. Prakt. Chem. 1847, 41, 137.  doi: 10.1002/prac.18470410118

    2. [2]

      Baizer, M. M. J. Electrochem. Soc. 1964, 111, 215.  doi: 10.1149/1.2426086

    3. [3]

      (a) Wang, F.; Stahl, S. S. Acc. Chem. Res. 2020, 53, 561.
      (b) Siu, J. C.; Fu, N.; Lin, S. Acc. Chem. Res. 2020, 53, 547.
      (c) Fuchigami, T.; Inagi, S. Acc. Chem. Res. 2020, 53, 322.
      (d) Flexer, V.; Jourdin, L. Acc. Chem. Res. 2020, 53, 311.
      (e) Jiao, K.-J.; Xing, Y.-K.; Yang, Q.-L.; Qiu, H.; Mei, T.-S. Acc. Chem. Res. 2020, 53, 300.
      (f) Robinson, S.; Sigman, M. S. Acc. Chem. Res. 2020, 53, 289.
      (g) Jing, Q.; Moeller, K. D. Acc. Chem. Res. 2020, 53, 135.
      (h) Leech, M. C.; Lam, K. Acc. Chem. Res. 2020, 53, 121.
      (i) Yamamoto, K.; Kuriyama, M.; Onomura, O. Acc. Chem. Res. 2020, 53, 105.
      (j) Ackermann, L. Acc. Chem. Res. 2020, 53, 84.
      (k) Kingston, C.; Palkowitz, M. D.; Takahira, Y.; Vantourout, J. C.; Peters, B. K.; Kawamata, Y.; Baran, P. S. Acc. Chem. Soc. 2020, 53, 72.
      (l) Röckl, J. L.; Pollok, D.; Franke, R.; Waldvogel, S. R. Acc. Chem. Res. 2020, 53, 45.
      (m) Xiong, P.; Xu, H.-C. Acc. Chem. Res. 2019, 52, 3339.
      (n) Yuan, Y.; Lei, A. Acc. Chem. Res. 2019, 52, 3309.
      (o) Jiang, Y.; Xu, K.; Zeng, C. Chem. Rev. 2018, 118, 4485.
      (p) Yang, Q.-L.; Fang, P.; Mei, T.-S. Chin. J. Chem. 2018, 36, 338.
      (q) Ma, C.; Fang, P.; Mei, T.-S. ACS Catal. 2018, 8, 7179.
      (r) Karkas, M. D. Chem. Soc. Rev. 2018, 47, 5786.
      (s) Horn, E. J.; Rosen, B. R.; Baran, P. S. ACS Cent. Sci. 2016, 2, 302.

    4. [4]

      (a) Hou, Z.-W.; Xu, H.-C. Chin. J. Chem. 2020, 38, 394.
      (b) Ye, Z.; Zhang, F. Chin. J. Org. Chem. 2020, 40, 241 (in Chinese).
      (叶增辉, 张逢质, 有机化学, 2020, 40, 241.)
      (c) Qian, X.-Y.; Xiong, P.; Xu, H.-C. Acta Chim. Sinica 2019, 77, 879 (in Chinese).
      (钱向阳, 熊鹏, 徐海超, 化学学报, 2019, 77, 879.)
      (d) Yang, Q.-L.; Wang, X.-Y.; Weng, X.-J.; Yang, X.; Xu, X.-T.; Tong, X.; Fang, P.; Wu, X.-Y.; Mei, T.-S. Acta Chim. Sinica 2019, 77, 866 (in Chinese).
      (杨启亮, 王向阳, 翁信军, 杨祥, 徐学涛, 童晓峰, 方萍, 伍新燕, 梅天胜, 化学学报, 2019, 77, 866.)
      (e) Zhang, H. Tang, R.; Shi, X.; Xie, L.; Wu, J. Chin. J. Org. Chem. 2019, 39, 1837 (in Chinese).
      (张怀远, 唐蓉萍, 石星丽, 颉林, 伍家卫, 有机化学, 2019, 39, 1837.)
      (f) Feng, E.-Q.; Hou, Z.-W.; Xu, H.-C. Chin. J. Org. Chem. 2019, 39, 1424 (in Chinese).
      (冯恩祺, 侯中伟, 徐海超, 有机化学, 2019, 39, 1424.)
      (g) Zhou, Z.; Yuan, Y.; Cao, Y.; Qiao, J.; Yao, A.; Zhao, J.; Zou, W. Chen, W.; Lei, A. Chin. J. Chem. 2019, 37, 611.
      (h) Lu, F.; Yang, Z.; Wang, T.; Wang, T.; Zhang, Y.; Yuan, Y.; Lei, A. Chin. J. Chem. 2019, 37, 547.
      (i) Hou, Z.-W.; Yan, H.; Song, J.; Xu, H.-C. Chin. J. Chem. 2018, 36, 909.
      (j) Wu, Y.; Xi, Y.; Zhao, M.; Wang, S. Chin. J. Org. Chem. 2018, 38, 2590 (in Chinese).
      (吴亚星, 席亚超, 赵明, 王思懿, 有机化学, 2018, 38, 2590.)

    5. [5]

      (a) Chang, X.; Zhang, Q.; Guo, C. Angew. Chem., Int. Ed. 2020, 59, 12612.
      (b) Ghosh, M.; Shinde, V. S.; Rueping, M. Beilstein J. Org. Chem. 2019, 15, 2710.
      (c) Lin, Q.; Li, L.; Luo, S. Chem. Eur. J. 2019, 25, 10033.

    6. [6]

      Seebach, D.; Oei, H. A. Angew. Chem., Int. Ed. 1975, 14, 634.

    7. [7]

      (a) Louafi, F.; Moreau, J.; Shahane, S.; Golhen, S.; Roisnel, T.; Sinbandhit, S.; Hurvois, J.-P. J. Org. Chem. 2011, 76, 9720.
      (b) Feroci, M.; Inesi, A.; Orsini, M.; Palombi, L. Org. Lett. 2002, 4, 2617.

    8. [8]

      (a) Kodama, Y.; Fujiwara, A.; Kawamoto, H.; Ohta, N.; Kitani, A.; lto, S. Chem. Lett. 2001, 30, 240.
      (b) Horner, L.; Degner, D. Tetrahedron Lett. 1971, 12, 1241.

    9. [9]

      (a) Shiigi, H.; Mori, H.; Tanaka, T.; Demizu, Y.; Onomura, O. Tetrahedron Lett. 2008, 49, 5247.
      (b) Kuroboshi, M.; Yoshihisa, H.; Cortona, M. N.; Kawakami, Y.; Gao, Z.; Tanaka, H. Tetrahedron Lett. 2000, 41, 8131.
      (c) Kashiwagi, Y.; Kurashima, F.; Kikuchi, C.; Anzai, J.; Osa, T.; Bobbitt, J. M. Chem. Commun. 1999, 1983.

    10. [10]

      (a) Kashiwagi, Y.; Kurashima, F.; Chiba, S.; Anzai, J.; Osa, T.; Bobbitt, J. M. Chem. Commun. 2003, 114.
      (b) Moutet, J. C.; Duboc-Toia, C.; Ménage, S.; Tingry, S. Adv. Mater. 1998, 10, 665.
      (c) Komori, T.; Nonaka, T. J. Am. Chem. Soc. 1984, 106, 2656.
      (d) Firth, B. E.; Miller, L. L. J. Am. Chem. Soc. 1976, 98, 8272.
      (e) Watkins, B. F.; Behling, J. R.; Kariv, E.; Miller, L. L. J. Am. Chem. Soc. 1975, 97, 3549.

    11. [11]

      Gourley, R. N.; Grimshaw, J.; Millar, P. G. Chem. Commun. 1967, 1278.

    12. [12]

      (a) Kobayashi, S.; Sugiura, M. Adv. Synth. Catal. 2006, 348, 1496.
      (b) Lohray, B. B. Tetrahedron: Asymmetry 1992, 3, 1317.

    13. [13]

      (a) Sugimoto, H.; Kitayama, K.; Mori, S.; Itoh, S. J. Am. Chem. Soc. 2012, 134, 19270.
      (b) Metin, O.; Alp, N. A.; Akbayrak, S.; Bicer, A.; Gultekin, M. S.; Ozkar, S.; Bozkaya, U. Green Chem. 2012, 14, 1488.
      (c) Sugimoto, H.; Kitayama, K.; Mori, S.; Itoh, S. J. Am. Chem. Soc. 2012, 134, 19270.

    14. [14]

      (a) Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2024.
      (b) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483.
      (c) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974.

    15. [15]

      Amundsen, R.; Balko, E. N. Appl. J. Electrochem. 1992, 22, 810.  doi: 10.1007/BF01023722

    16. [16]

      Torii, S.; Liu, P.; Tanaka, H. Chem. Lett. 1995, 24, 319.  doi: 10.1246/cl.1995.319

    17. [17]

      Torii, S.; Liu, P.; Bhuvaneswari, N.; Amatore, C.; Jutand, A. J. Org. Chem. 1996, 61, 3055.  doi: 10.1021/jo952137r

    18. [18]

      Noyori, R. Asymmetric Catalysis in Organic Synthesis, Wiley, New York, 1994.

    19. [19]

      Guo, P.; Wong, K.-Y. Electrochem. Commun. 1999, 1, 559.  doi: 10.1016/S1388-2481(99)00110-1

    20. [20]

      Tanaka, H.; Kuroboshi, M.; Takeda, H.; Kanda, H.; Torii, S. J. Electroanal. Chem. 2001, 507, 75.  doi: 10.1016/S0022-0728(01)00387-4

    21. [21]

      Fu, N.; Song, L.; Liu, J.; Shen, Y.; Siu, J. C.; Lin, S. J. Am. Chem. Soc. 2019, 141, 14480.  doi: 10.1021/jacs.9b03296

    22. [22]

      Minato, D.; Arimoto, H.; Nagasue, Y.; Demizu, Y.; Onomura, O. Tetrahedron. 2008, 64, 6675.  doi: 10.1016/j.tet.2008.05.015

    23. [23]

      Onomura, O.; Arimoto, H.; Matsumura, Y.; Demizu, Y. Tetrahedron Lett. 2007, 48, 8668.  doi: 10.1016/j.tetlet.2007.10.014

    24. [24]

      Shono, T.; Hamaguchi, H.; Matsumura, Y. J. Am. Chem. Soc. 1975, 97, 4264.  doi: 10.1021/ja00848a020

    25. [25]

      (a) Jones, A. M.; Banks, C. E. Beilstein J. Org. Chem. 2014, 10, 3056.
      (b) Onomura, O. Heterocycles 2012, 85, 2111.
      (c) Shono, T. Top. Curr. Chem. 1988, 148, 1.

    26. [26]

      Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230.  doi: 10.1021/acs.chemrev.7b00397

    27. [27]

      (a) D'Oca, M. G. M.; Pilli, R. A.; Pardini, V. L.; Curi, D.; Comni- nos, F. C. M. J. Braz. Chem. Soc. 2001, 12, 507.
      (b) Sierecki, E.; Errasti, G.; Martens, T.; Royer, J. Tetrahedron 2010, 66, 10002.
      (c) Lee, D.-S. Tetrahedron: Asymmetry 2009, 20, 2014.
      (d) Shankaraiah, N.; Pilli, R. A.; Santos, L. S. Tetrahedron Lett. 2008, 5098.
      (e) Zelgert, M.; Nieger, M.; Lennartz, M.; Steckhan, E. Tetrahedron 2002, 58, 2641.
      (f) Matsumura, Y.; Kanda, Y.; Shirai, K.; Onomura, O.; Maki, T. Tetrahedron 2000, 56, 7411.

    28. [28]

      Fu, N.; Li, L.; Yang, Q.; Luo, S. Org. Lett. 2017, 19, 2122.  doi: 10.1021/acs.orglett.7b00746

    29. [29]

      Gao, P.-S.; Weng, X.-J.; Wang, Z.-H.; Zheng, C.; Sun, B.; Chen, Z.-H.; You, S.-L.; Mei, T.-S. Angew. Chem., Int. Ed. 2020, 59, 15254.  doi: 10.1002/anie.202005099

    30. [30]

      (a) Lennox, A. J. J.; Geos, S. L.; Webster, M. P.; Koolman, H. F.; Djuric, S. W.; Stahl, S. S. J. Am. Chem. Soc. 2018, 140, 11227.
      (b) Wang, F.; Rafiee, M.; Stahl, S. S. Angew. Chem., Int. Ed. 2018, 57, 6686.
      (c) Wu, Y.; Yi, H.; Lei, A. ACS Catal. 2018, 8, 1192.
      (d) Li, C.; Zeng, C.-C.; Hu, L.-M.; Yang, F.-L.; Yoo, S. J.; Little, R. D. Electrochim. Acta 2013, 114, 560.
      (e) Cao, Y.; Suzuki, K.; Tajima, T.; Fuchigami, T. Tetrahedron 2005, 6854.

    31. [31]

      Ryan, M. C.; Whitemire, L. D.; Mccann, S. D.; Stahl, S. S. Inorg. Chem. 2019, 58, 10194.  doi: 10.1021/acs.inorgchem.9b01326

    32. [32]

      Badalyan, A.; Stahl, S. S. Nature 2016, 535, 406.  doi: 10.1038/nature18008

    33. [33]

      Huang, X.; Zhang, Q.; Lin, J.; Harms, K.; Meggers, E. Nat. Catal. 2019, 2, 34.  doi: 10.1038/s41929-018-0198-y

    34. [34]

      Zhang, Q.; Chang, X.; Peng, L.; Guo, C. Angew. Chem., Int. Ed. 2019, 58, 6999.  doi: 10.1002/anie.201901801

    35. [35]

      Lu, P.; Jackson, J. J.; Eickhoff, J. A.; Zakarian, A. J. Am. Chem. Soc. 2015, 137, 656.  doi: 10.1021/ja512213c

    36. [36]

      Dhawa, U.; Tian, C.; Wdowik, T.; Oliveira, J. C. A.; Hao, J.; Ackermann, L. Angew. Chem., Int. Ed. 2020, 59, 13451.  doi: 10.1002/anie.202003826

    37. [37]

      Chen, B.-L.; Zhu, H.-W.; Xiao, Y.; Sun, Q.-L.; Wang, H.; Lu, J.-X. Electrochem. Commun. 2014, 42, 55.  doi: 10.1016/j.elecom.2014.02.009

    38. [38]

      Jiao, K.-J.; Li, Z.-M.; Xu, X.-T.; Zhang, L.-P.; Li, Y.-Q.; Zhang, K.; Mei, T.-S. Org. Chem. Front. 2018, 5, 2244.  doi: 10.1039/C8QO00507A

    39. [39]

      Franco, D.; Riahi, A.; Hénin, F.; Muzart, J.; Duñach, E. Eur. J. Org. Chem. 2002, 2257.

    40. [40]

      DeLano, T. J.; Reisman, S. E. ACS Catal. 2019, 9, 6751.  doi: 10.1021/acscatal.9b01785

    41. [41]

      Qiu, H.; Shuai, B.; Wang, Y.-Z.; Liu, D.; Chen, Y.-G.; Gao, P.-S.; Ma, H.-X.; Chen, S.; Mei, T.-S. J. Am. Chem. Soc. 2020, 142, 9872.  doi: 10.1021/jacs.9b13117

  • 加载中
    1. [1]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    2. [2]

      Jieshuai XiaoYuan ZhengYue ZhaoZhuangzhi ShiMinyan Wang . Asymmetric Nozaki-Hiyama-Kishi (NHK)-type reaction of isatins with aromatic iodides by cobalt catalysis. Chinese Chemical Letters, 2025, 36(5): 110243-. doi: 10.1016/j.cclet.2024.110243

    3. [3]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    4. [4]

      Xiang HuangDongzhen XuYang LiuXia HuangYangfan WuDongmei FangBing XiaWei JiaoJian LiaoMin Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665

    5. [5]

      Tengfei XuanYuan PanZhenyu ShiYang Wang . Organocatalytic asymmetric synthesis of oxazolines from N-acylimines. Chinese Chemical Letters, 2025, 36(6): 110352-. doi: 10.1016/j.cclet.2024.110352

    6. [6]

      Yanxin JiangKwai Wun ChengZhiping YangJun (Joelle) Wang . Pd-catalyzed enantioselective and regioselective asymmetric hydrophosphorylation and hydrophosphinylation of enynes. Chinese Chemical Letters, 2025, 36(5): 110231-. doi: 10.1016/j.cclet.2024.110231

    7. [7]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    8. [8]

      Chao ChenWenwen YuGuangen HuangXuelian RenXiangli ChenYixin LiShenggui LiangMengmeng XuMingyue ZhengYaxi YangHe HuangWei TangBing Zhou . Asymmetric macrocyclization enabled by Rh(Ⅲ)-catalyzed CH activation: Enantioenriched macrocyclic inhibitor of Zika virus infection. Chinese Chemical Letters, 2024, 35(11): 109574-. doi: 10.1016/j.cclet.2024.109574

    9. [9]

      Guang XuCuiju ZhuXiang LiKexin ZhuHao Xu . Copper-catalyzed asymmetric [4+1] annulation of yne–allylic esters with pyrazolones. Chinese Chemical Letters, 2025, 36(4): 110114-. doi: 10.1016/j.cclet.2024.110114

    10. [10]

      Ruixue LiuXiaobing DingQiwei LangGen-Qiang ChenXumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037

    11. [11]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    12. [12]

      Guoying Han Qazi Mohammad Junaid Xiao Feng . Topology-driven directed synthesis of metal-organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100447-100447. doi: 10.1016/j.cjsc.2024.100447

    13. [13]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    14. [14]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    15. [15]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    16. [16]

      Liliang ChuXiaoyan ZhangJianing LiXuelei DengMiao WuYa ChengWeiping ZhuXuhong QianYunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896

    17. [17]

      Qiao SongXue PengZhouyu WangLeyong Wang . Iron-catalyzed C–H activation: A sustainable approach to efficient organic synthesis. Chinese Chemical Letters, 2025, 36(5): 110869-. doi: 10.1016/j.cclet.2025.110869

    18. [18]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    19. [19]

      Ya-Ling LiJia-Wei KeYue LiuDong-Mei YaoJing-Dong ZhangYou-Cai XiaoFen-Er Chen . Asymmetric conjugated addition of aryl Grignard reagents for the construction of chromanones bearing quaternary stereogenic centers in batch and flow. Chinese Chemical Letters, 2025, 36(6): 110377-. doi: 10.1016/j.cclet.2024.110377

    20. [20]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

Metrics
  • PDF Downloads(14)
  • Abstract views(3593)
  • HTML views(440)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return