Citation: Li Pengshuai, Wu Yun, Bai Chaolumen, Bao Yongsheng. Insight into Catalytic Properties of Supported Palladium Nanoparticles Catalyzed ortho-Directed Sulfonylation[J]. Chinese Journal of Organic Chemistry, ;2020, 40(7): 1991-1998. doi: 10.6023/cjoc202003020 shu

Insight into Catalytic Properties of Supported Palladium Nanoparticles Catalyzed ortho-Directed Sulfonylation

  • Corresponding author: Bao Yongsheng, sbbys197812@163.com
  • Received Date: 8 March 2020
    Revised Date: 11 April 2020

    Fund Project: and the Program for Young Talents of Science and Technology in Universities of Inner Mongolia autonomous Region NJYT-17-a22National Natural Science Foundation of China (No. 21861030), and the Program for Young Talents of Science and Technology in Universities of Inner Mongolia autonomous Region (No. NJYT-17-a22)National Natural Science Foundation of China 21861030

Figures(5)

  • Catalyzed by supported palladium nanoparticles, an ortho-directed sulfonylation reaction between 2-phenylpyri-dine and arylsulfonyl chlorides has been developed. The full oxidation-state change of palladium was detected in the X-ray photoelectron spectroscopy (XPS) analysis of the supported palladium nanoparticles catalyst before and after reaction, which confirmed that Pd-catalyzed ortho-directed sulfonylation reaction was performed via a PdⅡ/IV catalytic cycle instead of Pd0/Ⅱ. The hot filtration test and other tests of catalysts further confirmed the hypothesis. This report afforded the most straightforward approach to confirm the variation of valence of palladium in ortho-directed sulfonylation reaction.
  • 加载中
    1. [1]

      (a) Huang, Z.; Lim, H. N.; Mo, F.; Young, M. C.; Dong, G. Chem. Soc. Rev. 2015, 44, 7764.
      (b) Segawa, Y.; Maekawa, T.; Itami, K. angew. Chem., Int. Ed. 2015, 54, 66.
      (c) Ye, B.; Cramer, N. acc. Chem. Res. 2015, 48, 1308.
      (d)(d) Daugulis, O.; Roane, J.; Tran, L. D. acc. Chem. Res. 2015, 48, 1053.

    2. [2]

      Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.  doi: 10.1021/cr900184e

    3. [3]

      (a) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. angew. Chem., Int. Ed. 2009, 48, 5094.
      (b)Daugulis, O.; Do, H.-Q.; Shabashov, D. acc. Chem. Res. 2009, 42, 1074.
      (c)Ricci, P.; Krä mer, K.; Cambeiro, X. C.; Larrosa, I. J. am. Chem. Soc. 2013, 135, 13258.
      (d)Sehnal, P.; Taylor, R. J. K.; Fairlamb, I. J. S. Chem. Rev. 2010, 110, 824.

    4. [4]

      (a) Dick, a. R.; Hull, K. L.; Sanford, M. S. J. am. Chem. Soc. 2004, 126, 2300.
      (b)Kalyani, D.; Deprez, N. R.; Desai, L. V.; Sanford, M. S. J. am. Chem. Soc. 2005, 127, 7330.
      (c)Deprez, N. R.; Sanford, M. S. J. am. Chem. Soc. 2009, 131, 11234.

    5. [5]

      Powers, D. C.; Ritter, T. Nat. Chem. 2009, 1, 302.  doi: 10.1038/nchem.246

    6. [6]

      (a) Liu, Y.-J.; Xu, H.; Kong, W.-J.; Shang, M.; Dai, H.-X.; Yu, J.-Q. Nature 2014, 515, 389.
      (b)Yu, L.; Huang, Y. P.; Wei, Z.; Ding, Y. H.; Su, C. L.; Xu, Q. J. Org. Chem. 2015, 80, 8677.

    7. [7]

      (a) adak, L.; Bhadra, S.; Ranu, B. C. Tetrahedron Lett. 2010, 5, 3811.
      (b)Williams, T. J.; Reay, a. J.; Whitwood, a. C.; Fairlamb, I. J. S. Chem. Commun. 2014, 50, 3052.

    8. [8]

      (a) Basle, O.; Bidange, J.; Shuai, Q.; Li, C.-J. adv. Synth. Catal. 2010, 352, 1145.
      (b)Zhao, X.; Dimitrijevic, E.; Dong, V. M. J. am. Chem. Soc. 2009, 131, 3466.

    9. [9]

      (a) Trindade, a. F.; Gois, P. M. P.; afonso, C. a. M. Chem. Rev. 2009, 109, 418.
      (b)Climent, M. J.; Corma, a.; Iborra, S. Chem. Rev. 2011, 111, 1072.
      (c)Li, C. L.; Sato, T.; Yamauchi, Y. Chem. Commun. 2014, 50, 11753.

    10. [10]

      (a) Sun, J. W.; Fu, Y. S.; He, G. Y.; Sun, X. Q.; Wang, X. Catal. Sci. Technol. 2014, 4, 1742.
      (b) Mandegani, Z.; asadi, M.; asadi, Z.; Mohajeri, a.; Iranpoor, N.; Omidvar, a. Green Chem. 2015, 17, 3326.

    11. [11]

      (a) Coupry, D. E.; Butson, J.; Petkov, P. S.; Saunders, M.; Donnell, K. O.; Kim, H.; Buckley, C.; addicoat, M.; Heine, T.; Szilágyi, P. Á . Chem. Commun. 2016, 52, 5175.
      (b)Chen, L. Y.; Rangan, S.; Li, J.; Jianga, H. F.; Li, Y. W. Green Chem. 2014, 16, 3978.
      (c)Fu, W. Q.; Feng, Y.; Fang, Z. X.; Chen, Q.; Tang, T.; Yua, Q. Y. Tang, T. D. Chem. Commun. 2016, 52, 3115.

    12. [12]

      (a) Kishore, R. M.; Kantam, L.; Yadav, J.; Sudhakar, M.; Laha, S.; Venugopal, a. J. Mol. Catal. a: Chem. 2013, 379, 213.
      (b)Jiao, Z. F.; Zhai, Z. Y.; Guo, X. N.; Guo, X. Y. J. Phys. Chem. C 2015, 119, 3238.
      (c)Huang, J. P.; Wang, W.; Li, H. X. aCS Catal. 2013, 3, 1526.

    13. [13]

      Zeng, M. F.; Du, Y. J.; Qi, C. Z.; Zuo, S. F.; Li, X. D.; Shao, L. J.; Zhang, X. M. Green Chem. 2011, 13, 350.

    14. [14]

      Hu, J. Y.; Yang, Q. W.; Yang, L. F.; Zhang, Z. G.; Su, B. G.; Bao, Z. B.; Ren, Q. L.; Xing, H. B.; Dai, S. aCS Catal. 2015, 5, 6724.  doi: 10.1021/acscatal.5b01690

    15. [15]

      (a) aziz, J.; Messaoudi, S.; alami, M.; Hamze, a. Org. Biomol. Chem. 2014, 12, 9743.
      (b)Xiao, F. H.; Chen, S. Q.; Tian, J. X.; Huang, H. W.; Liu, Y. J.; Deng, G. J. Green Chem. 2016, 18, 1538.
      (c)Liang, S.; Zhang, R. Y.; Xi, L.Y.; Chen, S. Y.; Yu, X. Q. J. Org. Chem. 2013, 78, 11874.
      (d)Reddy, L. R.; Hu, B.; Prashad, M.; Prasad, K. angew. Chem., Int. Ed. 2009, 48, 172.
      (e)Taniguchi, N. J. Org. Chem. 2015, 80, 1764.

    16. [16]

      Xu, Y. F.; Liu, P.; Li, S. L.; Sun. P. P. J. Org. Chem. 2015, 80, 1269.

    17. [17]

      Pillo, T.; Zimmermann, R.; Steiner, P.; Hüfner, S. J. Phys.: Condens. Matter 1997, 9, 3987.  doi: 10.1088/0953-8984/9/19/018

    18. [18]

      Zhang, D.; Zhaorigetu, B.; Bao, Y. S. J. Phys. Chem. C 2015, 119, 20426.  doi: 10.1021/acs.jpcc.5b04735

    19. [19]

      (a) Joo, S. H.; Park, J. Y.; Tsung, C. K.; Yamada, Y.; Yang, P. D. Nat. Mater. 2009, 8, 126.
      (b) Qiao, Z. a.; Zhang, P. F.; Chai, S. H.; Chi, M. F.; Veith, G. M.; Gallego, N. C.; Kidder, M.; Dai, S. J. am. Chem. Soc. 2014, 136, 11260.

    20. [20]

      Some report on the extensive Pd leaching of Pd/γ-al2O3, see:(a) Brazier, J. B.; Nguyen, B. N.; adrio, L. a.; Barreiro, E. M.; Leong, W. P.; Newton, M. a.; Figueroa, S. J. a.; Hellgardt, K.; Hii, K. K. M. Catal. Today 2014, 229, 95.
      (b)Thathagar, M. B.; ten Elshof, J. E.; Rothenberg, G. angew. Chem., Int. Ed. 2006, 45, 2886.

    21. [21]

      Wang, F.; Yu, X.; Qi, Z.; Li, X. Chem.-Eur. J. 2016, 22, 511.  doi: 10.1002/chem.201504179

    22. [22]

      Niu, L.; Yang, H.; Yang, D.; Fu, H. adv. Synth. Catal. 2012, 354, 2211.

  • 加载中
    1. [1]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    2. [2]

      Wenling YuanFengli LiZhe ChenQiaoxin XuZhenhua GuanNanyu YaoZhengxi HuJunjun LiuYuan ZhouYing YeYonghui Zhang . AbnI: An α-ketoglutarate-dependent dioxygenase involved in brassicicene CH functionalization and ring system rearrangement. Chinese Chemical Letters, 2024, 35(5): 108788-. doi: 10.1016/j.cclet.2023.108788

    3. [3]

      Wei-Bin LiXiao-Chao HuangPei LiuJie KongGuo-Ping Yang . Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization. Chinese Chemical Letters, 2025, 36(6): 110543-. doi: 10.1016/j.cclet.2024.110543

    4. [4]

      Shuai TangZian WangMengyi ZhuXinyun ZhaoXiaoyun HuHua Zhang . Synthesis of organoboron compounds via heterogeneous C–H and C–X borylation. Chinese Chemical Letters, 2025, 36(5): 110503-. doi: 10.1016/j.cclet.2024.110503

    5. [5]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    6. [6]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    7. [7]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    8. [8]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    9. [9]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    10. [10]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309

    11. [11]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    12. [12]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    13. [13]

      Xin Dong Tianqi Chen Jing Liang Lei Wang Huajie Wu Zhijin Xu Junhua Luo Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256

    14. [14]

      Yan-Jiang LiShu-Lei ChouYao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389

    15. [15]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    16. [16]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    17. [17]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    18. [18]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    19. [19]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    20. [20]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

Metrics
  • PDF Downloads(8)
  • Abstract views(1159)
  • HTML views(125)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return