Citation: Yu Ge, Wang Cheng. Research Progress of Covalent Organic Frameworks in Sensing[J]. Chinese Journal of Organic Chemistry, ;2020, 40(6): 1437-1447. doi: 10.6023/cjoc202003018 shu

Research Progress of Covalent Organic Frameworks in Sensing

  • Corresponding author: Wang Cheng, chengwang@whu.edu.cn
  • Received Date: 7 March 2020
    Revised Date: 5 April 2020
    Available Online: 17 April 2020

    Fund Project: the National Natural Science Foundation of China 21975188the National Natural Science Foundation of China 21772149Project supported by the National Natural Science Foundation of China (Nos. 21772149, 21975188)

Figures(9)

  • Covalent organic frameworks (COFs) are an emerging class of porous crystalline organic materials connected by covalent bonds. Owing to their high crystallinity, low density, large surface area and designable structures, COFs have potential applications in molecular adsorption and separation, catalysis, optoelectronic devices, and energy storage. Recently, due to their inherent characteristics, COFs have attracted a lot of interests in sensing. The research progress of COFs in sensing, including explosive sensing, humidity sensing, metal ions sensing, pH sensing, biosensing and gas sensing is summarized. Finally, a perspective of the application of COFs in sensing is given.
  • 加载中
    1. [1]

      (a) Ding, S. Y.; Wang, W. Chem. Soc. Rev. 2013, 42, 548.
      (b) Diercks, C. S.; Yaghi, O. M. Science 2017, 355, 923.
      (c) Chen, X.; Geng, K.; Liu, R.; Tan, K. T.; Gong, Y.; Li, Z.; Tao, S.; Jiang, Q.; Jiang, D. Angew. Chem. Int. Ed. 2020, 59, 5050.

    2. [2]

      Cooper, A. I. Adv. Mater. 2009, 21, 1291.  doi: 10.1002/adma.200801971

    3. [3]

      Yuan, Y.; Zhu, G. ACS Cent. Sci. 2019, 5, 409.  doi: 10.1021/acscentsci.9b00047

    4. [4]

      Tan, L.; Tan, B. Chem. Soc. Rev. 2017, 46, 3322.  doi: 10.1039/C6CS00851H

    5. [5]

      Baldwin, L. A.; Crowe, J. W.; Pyles, D. A.; McGrier, P. L. J. Am. Chem. Soc. 2016, 138, 15134.  doi: 10.1021/jacs.6b10316

    6. [6]

      Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166.  doi: 10.1126/science.1120411

    7. [7]

    8. [8]

      (a) Xu, H. S.; Ding, S. Y.; An, W. K.; Wu, H.; Wang, W. J. Am. Chem. Soc. 2016, 138, 11489.
      (b) Han, X.; Xia, Q.; Huang, J.; Liu, Y.; Tan, C.; Cui, Y. J. Am. Chem. Soc. 2017, 139, 8693.
      (c) Wei, P. F.; Qi, M. Z.; Wang, Z. P.; Ding, S. Y.; Yu, W.; Liu, Q.; Wang, L. K.; Wang, H. Z.; An, W. K.; Wang, W. J. Am. Chem. Soc. 2018, 140, 4623.
      (d) Chen, R.; Shi, J. L.; Ma, Y.; Lin, G.; Lang, X.; Wang, C. Angew. Chem., Int. Ed. 2019, 58, 6430.
      (e) Sharma, R. K.; Yadav, P.; Yadav, M.; Gupta, R.; Rana, P.; Srivastava, A.; Zbořil, R.; Varma, R. S.; Antonietti, M.; Gawande, M. B. Mater. Horiz. 2020, 7, 411.

    9. [9]

      (a) Bertrand, G. H.; Michaelis, V. K.; Ong, T. C.; Griffin, R. G.; Dinca, M. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 4923.
      (b) Dogru, M.; Handloser, M.; Auras, F.; Kunz, T.; Medina, D.; Hartschuh, A.; Knochel, P.; Bein, T. Angew. Chem., Int. Ed. 2013, 52, 2920.
      (c) Bessinger, D.; Ascherl, L.; Auras, F.; Bein, T. J. Am. Chem. Soc. 2017, 139, 12035.
      (d) Jin, E.; Asada, M.; Xu, Q.; Dalapati, S.; Addicoat, M. A.; Brady, M. A.; Xu, H.; Nakamura, T.; Heine, T.; Chen, Q.; Jiang, D. Science 2017, 357, 673.
      (e) Ding, H.; Li, J.; Xie, G.; Lin, G.; Chen, R.; Peng, Z.; Yang, C.; Wang, B.; Sun, J.; Wang, C. Nat. Commun. 2018, 9, 5234.

    10. [10]

      (a) Das, G.; Biswal, B. P.; Kandambeth, S.; Venkatesh, V.; Kaur, G.; Addicoat, M.; Heine, T.; Verma, S.; Banerjee, R. Chem. Sci. 2015, 6, 3931.
      (b) Ding, S. Y.; Dong, M.; Wang, Y. W.; Chen, Y. T.; Wang, H. Z.; Su, C. Y.; Wang, W. J. Am. Chem. Soc. 2016, 138, 3031.
      (c) Li, Z.; Huang, N.; Lee, K. H.; Feng, Y.; Tao, S.; Jiang, Q.; Nagao, Y.; Irle, S.; Jiang, D. J. Am. Chem. Soc. 2018, 140, 12374.
      (d) Liu, X.; Huang, D.; Lai, C.; Zeng, G.; Qin, L.; Wang, H.; Yi, H.; Li, B.; Liu, S.; Zhang, M.; Deng, R.; Fu, Y.; Li, L.; Xue, W.; Chen, S. Chem. Soc. Rev. 2019, 48, 5266.

    11. [11]

    12. [12]

    13. [13]

      (a) Wan, S.; Guo, J.; Kim, J.; Ihee, H.; Jiang, D. Angew. Chem., Int. Ed. 2008, 47, 8826.
      (b) Dalapati, S.; Gu, C.; Jiang, D. Small 2016, 12, 6513.
      (c) Dong, J.; Li, X.; Peh, S. B.; Yuan, Y. D.; Wang, Y.; Ji, D.; Peng, S.; Liu, G.; Ying, S.; Yuan, D.; Jiang, J.; Ramakrishna, S.; Zhao, D. Chem. Mater. 2018, 31, 146.
      (d) Dalapati, S.; Jin, E.; Addicoat, M.; Heine, T.; Jiang, D. J. Am. Chem. Soc. 2016, 138, 5797.

    14. [14]

    15. [15]

      (a) Sikarwar, S.; Yadav, B. C. Sens. Actuator, A 2015, 233, 54.
      (b) Yeo, T. L.; Sun, T.; Grattan, K. T. V. Sens. Actuator, A 2008, 144, 280.

    16. [16]

      (a) Jhulki, S.; Evans, A. M.; Hao, X. L.; Cooper, M. W.; Feriante, C. H.; Leisen, J.; Li, H.; Lam, D.; Hersam, M. C.; Barlow, S.; Bredas, J. L.; Dichtel, W. R.; Marder, S. R. J. Am. Chem. Soc. 2020, 142, 783.
      (b) Ascherl, L.; Evans, E. W.; Hennemann, M.; Di Nuzzo, D.; Hufnagel, A. G.; Beetz, M.; Friend, R. H.; Clark, T.; Bein, T.; Auras, F. Nat. Commun. 2018, 9, 3802.
      (c) Huang, W.; Jiang, Y.; Li, X.; Li, X.; Wang, J.; Wu, Q.; Liu, X. ACS Appl. Mater. Interfaces 2013, 5, 8845.
      (d) Singh, H.; Tomer, V. K.; Jena, N.; Bala, I.; Sharma, N.; Nepak, D.; De Sarkar, A.; Kailasam, K.; Pal, S. K. J. Mater. Chem. A 2017, 5, 21820.
      (e) Qian, H. L.; Dai, C.; Yang, C. X.; Yan, X. P. ACS Appl. Mater. Interfaces 2017, 9, 24999.

    17. [17]

    18. [18]

      (a) Cui, W. R.; Jiang, W.; Zhang, C. R.; Liang, R. P.; Liu, J; Qiu, J. D. ACS Sustainable Chem. Eng. 2020, 8, 445.
      (b) Chen, G.; Lan, H. H.; Cai, S. L.; Sun, B.; Li, X. L.; He, Z. H.; Zheng, S. R.; Fan, J.; Liu, Y.; Zhang, W. G. ACS Appl. Mater. Interfaces 2019, 11, 12830.
      (c) Wang, T.; Xue, R.; Chen, H.; Shi, P.; Lei, X.; Wei, Y.; Guo, H.; Yang, W. New J. Chem. 2017, 41, 14272.
      (d) Zhou, Z.; Zhong, W.; Cui, K.; Zhuang, Z.; Li, L.; Li, L.; Bi, J.; Yu, Y. Chem. Commun. 2018, 54, 9977.
      (e) Zhang, T.; Gao, C.; Huang, W.; Chen, Y.; Wang, Y.; Wang, J. Talanta 2018, 188, 578.
      (f) Wang, R.; Ji, W.; Huang, L.; Guo, L.; Wang, X. Anal. Lett. 2019, 52, 1757.

    19. [19]

      Li, Z.; Zhang, Y.; Xia, H.; Mu, Y.; Liu, X. Chem. Commun. 2016, 52, 6613.  doi: 10.1039/C6CC01476C

    20. [20]

      Li, M.; Cui, Z.; Pang, S.; Meng, L.; Ma, D.; Li, Y.; Shi, Z.; Feng, S. J. Mater. Chem. C 2019, 7, 11919.  doi: 10.1039/C9TC03265G

    21. [21]

      Zafar, S.; D'Emic, C.; Afzali, A.; Fletcher, B.; Zhu, Y.; Ning, T. Nanotechnology 2011, 22, 405501.  doi: 10.1088/0957-4484/22/40/405501

    22. [22]

      Liu, Y. Y.; Wu, M.; Zhu, L. N.; Feng, X. Z.; Kong, D. M. Chem. Asian J. 2015, 10, 1304.  doi: 10.1002/asia.201500106

    23. [23]

      (a) Zhang, Y.; Shen, X.; Feng, X.; Xia, H.; Mu, Y.; Liu, X. Chem. Commun. 2016, 52, 11088.
      (b) Chen, L.; He, L.; Ma, F.; Liu, W.; Wang, Y.; Silver, M. A.; Chen, L.; Zhu, L.; Gui, D.; Diwu, J.; Chai, Z.; Wang, S. ACS Appl. Mater. Interfaces 2018, 10, 15364.
      (c) Xu, M.; Wang, L.; Xie, Y.; Song, Y.; Wang, L. Sens. Actuator, B 2019, 281, 1009.
      (d) Ma, Y.; Yuan, F.; Yu, Y.; Zhou, Y..; Zhang, X. Anal. Chem. 2020, 92, 1424.

    24. [24]

    25. [25]

    26. [26]

      Yan, X.; Song, Y.; Liu, J.; Zhou, N.; Zhang, C.; He, L.; Zhang, Z.; Liu, Z. Biosens. Bioelectron. 2019, 126, 734.  doi: 10.1016/j.bios.2018.11.047

    27. [27]

      Wang, P.; Zhou, F.; Zhang, C.; Yin, S. Y.; Teng, L.; Chen, L.; Hu, X. X.; Liu, H. W.; Yin, X.; Zhang, X. B. Chem. Sci. 2018, 9, 8402.  doi: 10.1039/C8SC03393E

    28. [28]

      Zanoli, L. M.; D'Agata, R.; Spoto, G. Anal. Bioanal. Chem. 2012, 402, 1759.  doi: 10.1007/s00216-011-5318-3

    29. [29]

      Peng, Y.; Huang, Y.; Zhu, Y.; Chen, B.; Wang, L.; Lai, Z.; Zhang, Z.; Zhao, M.; Tan, C.; Yang, N.; Shao, F.; Han, Y.; Zhang, H. J. Am. Chem. Soc. 2017, 139, 8698.  doi: 10.1021/jacs.7b04096

    30. [30]

      Li, W.; Yang, C.; Yan, X. Chem. Commun. 2017, 53, 11469.  doi: 10.1039/C7CC06244C

    31. [31]

      Yang, Y.; Zhao, Z.; Yang, Y.; Li, G.; Hao, C. New J. Chem. 2019, 43, 9274.  doi: 10.1039/C9NJ00243J

    32. [32]

      (a) Xie, Y.; Ding, S.; Liu, J.; Wang, W.; Zheng, Q. J. Mater. Chem. C 2015, 3, 10066.
      (b) Kulkarni, R.; Noda, Y.; Kumar Barange, D.; Kochergin, Y. S.; Lyu, P.; Balcarova, B.; Nachtigall, P.; Bojdys, M. J. Nat. Commun. 2019, 10, 3228.
      (c) Meng, Z.; Stolz, R. M.; Mirica, K. A. J. Am. Chem. Soc. 2019, 141, 11929.
      (d) Pang, Y.; Yue, Q.; Huang, Y.; Yang, C.; Shen, X. Talanta 2020, 206, 120194.
      (e) Zhang, S.; Yang, Q.; Li, Z. Anal. Bioanal. Chem. 2017, 409, 3429.

    33. [33]

      Cui, F.; Xie, J.; Jiang, S.; Gan, S.; Ma, D.; Liang, R.; Jiang, G.; Zhao, X. Chem. Commun. 2019, 55, 4550.  doi: 10.1039/C9CC01548E

    34. [34]

      Yang, Y.; Zhao, Z.; Yang, Y.; Li, G.; Hao, C. New J. Chem. 2019, 43, 9274.  doi: 10.1039/C9NJ00243J

    35. [35]

      He, Z.; Gong, S.; Cai, S.; Yan, Y.; Chen, G.; Li, X.; Zheng, S.; Fan, J.; Zhang, W. Cryst. Growth Des. 2019, 19, 3543.  doi: 10.1021/acs.cgd.9b00409

  • 加载中
    1. [1]

      Xinwan ZhaoYue CaoMinjun LeiZhiliang JinTsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152

    2. [2]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    3. [3]

      Yueshuai Xu Wei Liu Xudong Chen Zhikun Zheng . 水相中制备共价有机框架单晶的实验教学设计. University Chemistry, 2025, 40(6): 256-265. doi: 10.12461/PKU.DXHX202408045

    4. [4]

      Yihong ShaoRongchen ShenSong WangShijie LiPeng ZhangXin Li . Composition engineering in covalent organic frameworks for tailored photocatalysis. Acta Physico-Chimica Sinica, 2025, 41(12): 100176-0. doi: 10.1016/j.actphy.2025.100176

    5. [5]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    6. [6]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    7. [7]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    8. [8]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    9. [9]

      Zian Fang Qianqian Wen Yidi Wang Hongxia Ouyang Qi Wang Qiuping Li . The Test Paper for Metal Ion: A Popular Science Experiment Based on Color Aesthetics. University Chemistry, 2024, 39(5): 108-115. doi: 10.3866/PKU.DXHX202310032

    10. [10]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    11. [11]

      Xin ZhouYiting HuoSongyu YangBowen HeXiaojing WangZhen WuJianjun Zhang . Understanding the effect of pH on protonated COF during photocatalytic H2O2 production by femtosecond transient absorption spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(12): 100160-0. doi: 10.1016/j.actphy.2025.100160

    12. [12]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    13. [13]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    14. [14]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    15. [15]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    16. [16]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    17. [17]

      Ping LIGeng TANXin HUANGFuxing SUNJiangtao JIAGuangshan ZHUJia LIUJiyang LI . Green synthesis of metal-organic frameworks with open metal sites for efficient ammonia capture. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2063-2068. doi: 10.11862/CJIC.20250020

    18. [18]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    19. [19]

      . Synthesis and properties of metal‐organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1-2.

    20. [20]

      Ruige ZHANGZhe ZHANGHe ZHENGZhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185

Metrics
  • PDF Downloads(53)
  • Abstract views(2759)
  • HTML views(871)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return