Citation: Li Zhifeng, Wang Wenpeng, Wang Xicun, Quan Zhengjun. Mechanism of Synthesis of Phosphinecarboxamides by Reaction of Sodium Phosphaethynolate Anion and Amines under Acid-Free Conditions: Density Functional Theory Investigation[J]. Chinese Journal of Organic Chemistry, ;2020, 40(6): 1563-1570. doi: 10.6023/cjoc202003012 shu

Mechanism of Synthesis of Phosphinecarboxamides by Reaction of Sodium Phosphaethynolate Anion and Amines under Acid-Free Conditions: Density Functional Theory Investigation

  • Corresponding author: Quan Zhengjun, quanzhengjun@hotmail.com
  • Received Date: 5 March 2020
    Revised Date: 17 May 2020
    Available Online: 29 May 2020

    Fund Project: the Natural Science Foundation of Gansu Province 17JR5RE010the National Natural Science Foundation of China 21562036Project supported by the National Natural Science Foundation of China (Nos. 21463023, 21562036) and the Natural Science Foundation of Gansu Province (No. 17JR5RE010)the National Natural Science Foundation of China 21463023

Figures(9)

  • The reaction of 2-phosphaethynolate anion and primary amines for phosphinecarboxamides synthesis using mechanochemistry has been studied using IR, 13C NMR and 31P NMR spectra, and the reaction occurred under grinding, mild and acid-free conditions at room temperature. In this paper, a comprehensive mechanistic density functional theory (DFT) of B3LYP/6-31G(d, p) study reveals that H shift can be aided/catalyzed with solvents and further the activation free energies barrier can be dramatically decreased, which is responsible for the higher yield of the product in the experiment.
  • 加载中
    1. [1]

      (a) Solařová, H.; Císařová, I.; Štěpnička, P. Organometallics 2014, 33, 4131.
      (b) Gómez Arrayás, R.; Adrio, J.; Carretero, J. C. Angew. Chem., Int. Ed. 2006, 45, 7674.

    2. [2]

      (a) Hiney, R. M.; Ficks, A.; Müller-Bunz, H.; Gilheany, D. G.; Higham, L. J. Organometallic Chemistry, the Royal Society of Chemistry, London, 2011, Vol. 37, p. 27.
      (b) Li, X.; Robinson, K. D.; Gaspar, P. P. J. Org. Chem. 1996, 61, 7702.
      (c) Chatterjee, S.; George, M. D.; Salem, G.; Willis, A. C. J. Chem. Soc., Dalton Trans. 2001, 1890.
      (d) Herrbach, A.; Marinetti, A.; Baudoin, O.; Guénard, D.; Guéritte, F. J. Org. Chem. 2003, 68, 4897.
      (e) Hoge, G.; Samas, B. Tetrahedron: Asymmetry 2004, 15, 2155.
      (f) Clark, T.; Landis, C. Tetrahedron: Asymmetry 2004, 15, 2123.

    3. [3]

      Kyba, E. P.; Liu, S. T. Inorg. Chem. 1985, 24, 1613.  doi: 10.1021/ic00205a005

    4. [4]

      Katti, K. V.; Gali, H.; Smith, C. J.; Berning, D. E. Acc. Chem. Res. 1999, 32, 9.  doi: 10.1021/ar9800082

    5. [5]

      (a) Hooper, T. N.; Huertos, M. A.; Jurca, T.; Pike, S. D.; Weller, A. S.; Manners, I. Inorg. Chem. 2014, 53, 3716.
      (b) Dorn, H.; Singh, R. A.; Massey, J. A.; Nelson, J. M.; Jaska, C. A.; Lough, A. J.; Manners, I. J. Am. Chem. Soc. 2000, 122, 6669.
      (c) Dorn, H.; Singh, R. A.; Massey, J. A.; Lough, A. J.; Manners, I. Angew. Chem., Int. Ed. 1999, 38, 3321.
      (d) Dorn, H.; Singh, R. A.; Massey, J. A.; Lough, A. J.; Manners, I. Angew. Chem. 1999, 111, 3540.

    6. [6]

      (a) Duckmanton, P. A.; Blake, A. J.; Love, J. B. Inorg. Chem. 2005, 44, 7708.
      (b) Meeuwissen, J.; Detz, R.; Sandee, A. J.; de Bruin, B.; Siegler, M. A.; Spek, A. L.; Reek, J. N. H. Eur. J. Inorg. Chem. 2010, 2010, 2992.
      (c) Škoch, K.; Císařová, I.; Štěpnička, P. Organometallics 2016, 35, 3378.

    7. [7]

      (a) Becker, G.; Heckmann, G.; Hübler, K.; Schwarz, W. Z. Anorg. Allg. Chem. 1995, 621, 34.
      (b) Becker, G.; Schwarz, W.; Seidler, N.; Westerhausen, M. Z. Anorg. Allg. Chem. 1992, 612, 72.

    8. [8]

      (a) Puschmann, F. F.; Stein, D.; Heift, D.; Hendriksen, C.; Gal, Z. A.; Grützmacher, H.-F.; Grützmacher, H. Angew. Chem., Int. Ed. 2011, 50, 8420.
      (b) Jupp, A. R.; Goicoechea, J. M. Angew. Chem., Int. Ed. 2013, 52, 10064.
      (c) Li, Z.; Chen, X.; Benkö, Z.; Liu, L.; Ruiz, D. A.; Peltier, J. L.; Bertrand, G.; Su, C.-Y.; Grützmacher, H. Angew. Chem., Int. Ed. 2016, 55, 6018.
      (d) Jupp, A. R.; Goicoechea, J. M. J. Am. Chem. Soc. 2013, 135, 19131.

    9. [9]

      (a) Jupp, A. R.; Trott, G.; Payen de la Garanderie, É.; Holl, J. D. G.; Carmichael, D.; Goicoechea, J. M. Chem.-Eur. J. 2015, 21, 8015.
      (b) Robinson, T. P.; Goicoechea, J. M. Chem.-Eur. J. 2015, 21, 5727.

    10. [10]

      (a) Magnall, R.; Balázs, G.; Lu, E.; Tuna, F.; Wooles, A. J.; Scheer, M.; Liddle, S. T. Angew. Chem., Int. Ed. 2019, 58, 10215.
      (b) Goicoechea, J. M.; Grützmacher, H. Angew. Chem., Int. Ed. 2018, 57, 16968.

    11. [11]

      (a) Hansmann, M. M.; Bertrand, G. J. Am. Chem. Soc. 2016, 138, 15885.
      (b) Liu, L.; Ruiz, D. A.; Munz, D.; Bertrand, G. Chem 2016, 1, 147.

    12. [12]

      Liu, L.; Ruiz, D. A.; Dahcheh, F.; Bertrand, G.; Suter, R.; Tondreau, A. M.; Grützmacher, H. Chem. Sci. 2016, 7, 2335.  doi: 10.1039/C5SC04504E

    13. [13]

      Wu, Y.; Liu, L.; Su, J.; Zhu, J.; Ji, Z.; Zhao, Y. Organometallics 2016, 35, 1593.  doi: 10.1021/acs.organomet.6b00187

    14. [14]

      Wu, Y.-H.; Li, Z.-F.; Wang, W.-P.; Wang, X.-C.; Quan, Z.-J. Eur. J. Org. Chem. 2017, 2017, 5546.  doi: 10.1002/ejoc.201700867

    15. [15]

      (a) Becke, A. D. Phys. Rev. A 1988, 38, 3098.
      (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
      (c) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.

    16. [16]

      (a) Cui, C.-X.; Chen, H.; Li, S.-J.; Zhang, T.; Qu, L.-B.; Lan, Y. Coord. Chem. Rev. 2020, 412, 213251.
      (b) Faza, O. N.; López, C. S.; Álvarez, R.; de Lera, A. R. J. Am. Chem. Soc. 2006, 128, 2434.
      (c) Shi, F.-Q.; Li, X.; Xia, Y.; Zhang, L.; Yu, Z.-X. J. Am. Chem. Soc. 2007, 129, 15503.
      (d) Yu, Z.-X.; Wender, P. A.; Houk, K. N. J. Am. Chem. Soc. 2004, 126, 9154.
      (e) Li, Z.-F.; Fan, Y.; DeYonker, N. J.; Zhang, X.; Su, C.-Y.; Xu, H.; Xu, X.; Zhao, C. J. Org. Chem. 2012, 77, 6076.
      (f) Li, Z.-F.; Yang, X.-P.; Hui-Xue, L.; Guo, Z. Organometallics 2014, 33, 5101.
      (g) Zhou, T.; Xia, Y. Organometallics 2014, 33, 4230.
      (h) Wang, Y.; Liao, W.; Huang, G.; Xia, Y.; Yu, Z.-X. J. Org. Chem. 2014, 79, 5684.
      (i) Cohen, A. J.; Mori-Sánchez, P.; Yang, W. Chem. Rev. 2012, 112, 289.
      (j) Hou, C.; Jiang, J.; Zhang, S.; Wang, G.; Zhang, Z.; Ke, Z.; Zhao, C. ACS Catal. 2014, 4, 2990.
      (k) Tsipis, C. A.; Karipidis, P. A. J. Am. Chem. Soc. 2003, 125, 2307.

    17. [17]

      Frisch, M. J.; Trucks, G. W.; Schlegel, G. W.; Scuseria, G. W. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013.

    18. [18]

      (a) Fukui, K. Acc. Chem. Res. 1981, 14, 363.
      (b) Fukui, K. J. Phys. Chem. 1970, 74, 4161.

    19. [19]

      Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 4538.  doi: 10.1021/jp809094y

    20. [20]

      Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Weinhold, F. NBO 5.0, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2001.

    21. [21]

      Karton, A.; O'Reilly, R. J.; Radom, L. J. Phys. Chem. A 2012, 116, 4211.  doi: 10.1021/jp301499y

    22. [22]

      (a) Ess, D. H.; Houk, K. N. J. Am. Chem. Soc. 2008, 130, 10187.
      (b) Bickelhaupt, F. M.; Houk, K. N. Angew. Chem., Int. Ed. 2017, 56, 10070.
      (c) Lv, X.; Zhang, X.; Sa, R.; Huang, F.; Lu, G. Org. Chem. Front. 2019, 6, 3629.
      (d) Ogunlana, A. A.; Bao, X. Chem. Commun. 2019, 55, 11127.

  • 加载中
    1. [1]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    2. [2]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

    3. [3]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    4. [4]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    5. [5]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    6. [6]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    7. [7]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    8. [8]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    9. [9]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    10. [10]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    11. [11]

      Zhongchao ZhouJian SongYinghao XieYuqian MaHong HuHui LiLei ZhangCharles H. Lawrie . DFT calculation for organic semiconductor-based gas sensors: Sensing mechanism, dynamic response and sensing materials. Chinese Chemical Letters, 2025, 36(6): 110906-. doi: 10.1016/j.cclet.2025.110906

    12. [12]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    13. [13]

      Yiwen XuChaozheng HeChenxu ZhaoLing Fu . Single-atom Ti doping on S-vacancy two-dimensional CrS2 as a catalyst for ammonia synthesis: A DFT study. Chinese Chemical Letters, 2025, 36(4): 109797-. doi: 10.1016/j.cclet.2024.109797

    14. [14]

      Yan GuoHongtao BianLe YuJiani MaYu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971

    15. [15]

      Haixia WuKailu Guo . Sulfur reduction reaction mechanism elucidated with in situ Raman spectroscopy. Chinese Chemical Letters, 2025, 36(6): 110654-. doi: 10.1016/j.cclet.2024.110654

    16. [16]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    17. [17]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    18. [18]

      Tao BanXi-Yang YuHai-Kuo TianZheng-Qing HuangChun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549

    19. [19]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    20. [20]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

Metrics
  • PDF Downloads(5)
  • Abstract views(687)
  • HTML views(149)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return