Citation: Kong Qingshan, Li Xinglong, Xu Huajian, Fu Yao. Study on Reaction of γ-Valerolactone and Amine Catalyzed by Zirconium-Based Lewis Acids[J]. Chinese Journal of Organic Chemistry, ;2020, 40(7): 2062-2070. doi: 10.6023/cjoc202003008 shu

Study on Reaction of γ-Valerolactone and Amine Catalyzed by Zirconium-Based Lewis Acids

  • Corresponding author: Xu Huajian, hjxu@hfut.edu.cn Fu Yao, fuyao@ustc.edu.cn
  • Received Date: 8 March 2020
    Revised Date: 2 April 2020
    Available Online: 17 April 2020

    Fund Project: Project supported by the National Key Research and Development Program of China (No. 2018YFB1501604), the National Natural Science Foundation of China (No. 21472033), the Key Research and Development Program Projects in Anhui Province (No. 201904a07020069), and the Fundamental Research Funds for the Central Universitiesthe Key Research and Development Program Projects in Anhui Province No. 201904a07020069the National Natural Science Foundation of China  (No. 21472033the National Key Research and Development Program of China No. 2018YFB1501604

Figures(3)

  • γ-Valerolactone (GVL) is an important biomass platform molecule, it can be converted into high value-added chemicals and fuel, which has important application prospects. This article describes a method for the synthesis of hydroxyamides and pyrrolidones from GVL and amine compounds by reductive amination/cyclization reactions under mild conditions using zirconium-based Lewis acid catalysts Zr-P-O and ZrOCl2·8H2O, respectively. In particular, a moderately high product yield can be obtained with the absence of a solvent. This method further lays the foundation for the application research of GVL.
  • 加载中
    1. [1]

    2. [2]

      (a) Paul, S. F. US 5697987, 1997.
      (b) Serrano-Ruiz, J. C.; Wang, D.; Dumesic, J. A. Green Chem.2010, 12, 574.

    3. [3]

      Geilen, F. M.; Engendahl, B.; Harwardt, A.; Marquardt, W.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2010, 49, 5510.

    4. [4]

      Mehdi, H.; Fábos, V.; Tuba, R.; Bodor, A.; Mika, L. T.; Horváth, I.T. Top. Catal. 2008, 48, 49.

    5. [5]

      Lange, J. P.; Price, R.; Ayoub, P. M.; Louis, J.; Petrus, L.; Clarke, L.; Gosselink, H. Angew. Chem., Int. Ed. 2010, 49, 4479.

    6. [6]

      (a) Bond, J. Q.; Alonso, D. M.; Wang, D.; West, R. M.; Dumesic, J.A. Science 2010, 327, 1110.
      (b) Bond, J. Q.; Martin Alonso, D.; West, R. M.; Dumesic, J. A.Langmuir 2010, 26, 16291.

    7. [7]

      Lange, J. P.; Vestering, J. Z.; Haan, R. J. Chem. Commun. 2007, 33, 3488.

    8. [8]

      (a) Fieser, M.; Fieser, L. F.; Toromanoff, E.; Hirata, Y.; Heymann, H.; Tefft, M.; Bhattacharya, S. J. Am. Chem. Soc. 1956, 78, 2825.
      (b) Newkome, G. R.; Baker, G. R.; Saunders, M.J.; Russo, P. S.; Gupta, V. K.; Yao, Z.; Miller, J. E.; Bouillion, K. J. Am. Chem. Soc.1986, 108, 752.
      (c) Newkome, G. R.; Yao, Z.; Baker, G. R.; Gupta, V. K.; Russo, P.S.; Saunders, M. J. J. Am. Chem. Soc. 1986, 108, 849.

    9. [9]

      (a) Rodgers, S. J.; Ng, C. Y.; Raymond, K. N. J. Am. Chem. Soc.1985, 107, 4094.
      (b) Collins, T. J.; Coots, R. J.; Furutani, T. T.; Keech, J. T.; Peake, G. T.; Santarsiero, B. D. J. Am. Chem. Soc. 1986, 108, 5333.

    10. [10]

      Tietze, L. F.; Brand, S.; Pfeiffer, T. Angew. Chem., Int. Ed. 1985, 24, 784.

    11. [11]

    12. [12]

      (a) Gresham, T. L.; Jansen, J. E.; Shaver, F. W.; Bankert, R. A.; Fiedorek, F. T. J. Am. Chem. Soc. 1951, 73, 3168.
      (b) Guo, W.; Gómez, J. E.; Martínez-Rodríguez, L.; Bandeira, N.A.; Bo, C.; Kleij, A. W. ChemSusChem 2017, 10, 1969.

    13. [13]

      (a) Matsumoto, K.; Hashimoto, S.; Okamoto, T.; Otani, S.; Hayami, J. I. Chem. Lett. 1987, 16, 803.
      (b) Matsumoto, K.; Hashimoto, S.; Uchida, T.; Okamoto, T.; Otani, S. B. Chem. Soc. Jpn. 1989, 62, 3138.

    14. [14]

      Chalid, M.; Heeres, H. J.; Broekhuis, A. A. J. Appl. Polym. Sci.2012, 123, 3556.

    15. [15]

      (a) Das, S.; Addis, D.; Knöpke, L. R.; Bentrup, U.; Junge, K.; Brückner, A.; Beller, M. Angew. Chem., Int. Ed. 2011, 50, 9180.
      (b) Lei, A.; Waldkirch, J. P.; He, M.; Zhang, X. Angew. Chem., Int.Ed. 2002, 41, 4526.
      (c) Du, X. L.; He, L.; Zhao, S.; Liu, Y. M.; Cao, Y.; He, H. Y.; Fan, K. N. Angew. Chem., Int. Ed. 2011, 123, 7961.
      (d) Gao, G.; Sun, P.; Li, Y.; Wang, F.; Zhao, Z.; Qin, Y.; Li, F. ACS Catal. 2017, 7, 4927.

    16. [16]

      (a) Huang, Y.-B.; Dai, J.-J.; Deng, X.-J.; Qu, Y.-C.; Guo, Q.-X.; Fu, Y. ChemSusChem 2011, 4, 1578.
      (b) Touchy, A. S.; Hakim Siddiki, S. M. A.; Kon, K.; Shimizu, K.-I.ACS Catal. 2014, 4, 3045.
      (c) Vidal, J. D.; Climent, M. J.; Concepcion, P.; Corma, A.; Iborra, S.; Sabater, M. J. ACS Catal. 2015, 5, 5812.
      (d) Wei, Y.; Wang, C.; Jiang, X.; Xue, D.; Li, J.; Xiao, J.Chem.Commun. 2013, 49, 5408.
      (e) Sun, Z.; Chen, J.; Tu, T. Green Chem. 2017, 19, 789.
      (f) Ledoux, A.; Sandjong Kuigwa, L.; Framery, E.; Andrioletti, B.Green Chem. 2015, 17, 3251.
      (g) Du, X.-L.; He, L.; Zhao, S.; Liu, Y.-M.; Cao, Y.; He, H.-Y.; Fan, K.-N. Angew. Chem., Int. Ed. 2011, 50, 7815.
      (h) Ogiwara, Y.; Uchiyama, T.; Sakai, N. Angew. Chem., Int. Ed.2016, 55, 1864.

    17. [17]

      (a) Mansoor, S. S.; Aswin, K.; Logaiya, K.; Sudhan, S. P. N. J.Saudi Chem. Soc. 2016, 20, 138.
      (b) Singh, R.; Jakhar, K.; Sharma, P. Chem. Sci. 2017, 6, 135.
      (c) Han, L.; Zhou, Z. Appl. Organomet. Chem. 2019, 33, e4755.

    18. [18]

      Shi, M. S.; Cui, C.; Yin, W. P. Eur. J. Org. Chem. 2005, 11, 2379.

    19. [19]

      Ghosh, R.; Maiti, S.; Chakraborty, A. Tetrahedron Lett. 2005, 46, 147.

    20. [20]

      Sun, H. B.; Hua, R.M.; Yin, Y. W. Molecules 2006, 11, 263.

    21. [21]

      Firouzabadi, H.; Iranpoor, N.; Jafarpour, M.; Ghaderi, A. J. Mol.Catal., A: Chem. 2006, 252, 150.

    22. [22]

      Eftekhari-Sis, B.; Abdollahifar, A.; Hashemi, M. M.; Zirak, M. Eur.J. Org. Chem. 2006, 22, 5152.

    23. [23]

      Zhang, Z. H.; Li, T. S.; Li, J. J. Catal. Commun. 2007, 8, 1615.

    24. [24]

      Bhagat, S.; Chakraborti, A. K. J. Org. Chem. 2008, 73, 6029.

    25. [25]

      Shen, W. L.; Wang, M.; Feng, J. J.; Tian, H. Tetrahedron Lett. 2008, 49, 4047.

    26. [26]

      Gliozzi, G.; Innorta, A.; Mancini, A.; Bortolo, R.; Perego, C.; Ricci, M.; Cavani, F. Appl. Catal. B-Environ. 2014, 145, 24.

    27. [27]

      Liao, Y.; Liu, Q.; Wang, T.; Long, J.; Ma, L.; Zhang, Q. Green Chem. 2014, 16, 3305.

    28. [28]

      Li, F.; France, L. J.; Cai, Z.; Li, Y.; Liu, S.; Lou, H.; Li, X. Appl.Catal. B-Environ. 2017, 214, 67.

    29. [29]

      Antonetti, C.; Melloni, M.; Licursi, D.; Fulignati, S.; Ribechini, E.; Rivas, S.; Galletti, A. M. R. Appl. Catal. B-Environ. 2017, 206, 364.

    30. [30]

      Wu, C.; Luo, X.; Zhang, H.; Liu, X.; Ji, G.; Liu, Z.; Liu, Z. Green Chem. 2017, 19, 3525.

    31. [31]

      (a) Burba, C.; Volland, H. G. US 4156779, 1979.
      (b) Nelson, S. G.; Spencer, K. L.; Cheung, W. S.; Mamie, S. J. Tetrahedron 2002, 58, 7081.

    32. [32]

      Vollema, G.; Arens, J. F. Recl. Trav. Chim. Pays-Bas 1963, 82, 305.

    33. [33]

      De Jonge A. P.; Van der Ven B. Recl. Trav. Chim. Pays-Bas 1965, 84, 1177.

    34. [34]

      Xu, Z.; Yan, P.; Jiang H.; Liu, K.; Zhang, Z. C. Chin. J. Chem.2017, 35, 581.

    35. [35]

      Lukeš, R.; Koblicova, Z.; Blaha, K. Chem. Commun. 1963, 28, 2182.

  • 加载中
    1. [1]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    2. [2]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    3. [3]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    4. [4]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    5. [5]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    6. [6]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    8. [8]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    9. [9]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    12. [12]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    13. [13]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    17. [17]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    18. [18]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    19. [19]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    20. [20]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

Metrics
  • PDF Downloads(20)
  • Abstract views(1947)
  • HTML views(554)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return