Citation: Zhou Xiaoqin, Cui Mengyuan, Jia Chengli, Yang Min, Ji Min, Wang Peng. Novel Ratio-Based Fluorescent Probe for Intracellular Cys Detection[J]. Chinese Journal of Organic Chemistry, ;2020, 40(8): 2502-2507. doi: 10.6023/cjoc202003007 shu

Novel Ratio-Based Fluorescent Probe for Intracellular Cys Detection

  • Corresponding author: Ji Min, 101010516@seu.edu.cn Wang Peng, wangpeng159seu@hotmail.com
  • Received Date: 3 March 2020
    Revised Date: 4 May 2020
    Available Online: 19 May 2020

    Fund Project: The National Natural Science Foundation of China 81671745Project supported by the National Natural Science Foundation of China (No. 81671745)

Figures(6)

  • Cysteine is an important biological component of the human body, its levels are related to many diseases. It is especially important to respond quickly and accurately to cysteine concentrations. This study is based on the classical cysteine response mechanism. The thiol group of cysteine undergoes Michael addition to acrylate, and then undergoes intramolecular cyclization to specifically recognize cysteine. A novel ratio-based fluorescent probe was designed and synthesized in this study. The research results found that the probe can specifically recognize cysteine, the detection limit can reach 75 nmol·L-1, can fully respond within 30 min, and has good stability. It exists in cells and has little cytotoxic effects. Therefore, on the basis of solving the problem of poor water solubility, the probe can quickly and accurately analyze the concentration of cysteine in cells, which provides a new means for the study of various diseases and new ideas for the development of chemical materials.
  • 加载中
    1. [1]

      (a) Dai, C. G.; Du, X. J.; Song, Q. H. J. Org. Chem. 2015, 80, 12088.
      (b) Ganganboina, A. B.; Dutta Chowdhury, A.; Doong, R. A. ACS Appl. Mater. Interfaces 2018, 10, 614.

    2. [2]

      Chen, W.; Luo, H.; Liu, X.; Foley, J. W.; Song, X. Anal. Chem. 2016, 88, 3638.  doi: 10.1021/acs.analchem.5b04333

    3. [3]

      (a) He, L.; Yang, X.; Xu, K.; Lin, W. Anal. Chem. 2017, 89, 9567.
      (b) Tian, Q.; Chen, S.; Chen, J.; Liu, R.; Wang, Y.; Yang, X.; Ye, Y. Chin. J. Org. Chem. 2019, 39, 2089(in Chinese).
      (田庆, 陈双虎, 陈景龙, 刘蕊, 汪雨诗, 杨晓朋, 叶勇, 有机化学, 2019, 39, 2089.)

    4. [4]

      (a) Dong, B.; Lu, Y.; Zhang, N.; Song, W.; Lin, W. Anal. Chem. 2019, 91, 5513.
      (b) Li, S.; Song, D.; Huang, W.; Li, Z.; Liu, Z. Anal. Chem. 2020, 92, 2802.

    5. [5]

      (a) Cao, X.; Lin, W.; Yu, Q. J. Org. Chem. 2011, 76, 7423.
      (b) Chang, M. J.; Joo, J. H.; Lee, M. H. Bull. Korean Chem. Soc. 2019, 40, 539.
      (c) Chen, C.; Zhou, L.; Liu, W.; Liu, W. Anal. Chem. 2018, 90, 6138.

    6. [6]

      Deng, L.; Wu, W.; Guo, H.; Zhao, J.; Ji, S.; Zhang, X.; Yuan, X.; Zhang, C. J. Org. Chem. 2011, 76, 9294.  doi: 10.1021/jo201487m

    7. [7]

      (a) He, L.; Xu, Q.; Liu, Y.; Wei, H.; Tang, Y.; Lin, W. ACS Appl. Mater. Interfaces 2015, 7, 12809.
      (b) Ding, Y.; Pan, Y.; Han, Y. Ind. Eng. Chem. Res. 2019, 58, 7786.

    8. [8]

      (a) Guo, L.; Chan, M. S.; Xu, D.; Tam, D. Y.; Bolze, F.; Lo, P. K.; Wong, M. S. ACS Chem. Biol. 2015, 10, 1171-5.
      (b) He, L.; Yang, Y.; Lin, W. Anal. Chem. 2019, 91, 15220.
      (c) Ji, Y.; Wang, Y.; Zhang, N.; Xu, S.; Zhang, L.; Wang, Q.; Zhang, Q.; Hu, H. Y. J. Org. Chem. 2019, 84, 1299.

    9. [9]

      Fu, Z. H.; Han, X.; Shao, Y.; Fang, J.; Zhang, Z. H.; Wang, Y. W.; Peng, Y. Anal. Chem. 2017, 89, 1937.  doi: 10.1021/acs.analchem.6b04431

    10. [10]

      (a) Sun, S.; Qiao, B.; Jiang, N.; Wang, J.; Zhang, S.; Peng, X. Org. Lett. 2014, 16, 1132.
      (b) Yang, L. L.; Zou, S. Y.; Fu, Y. H.; Li, W.; Wen, X. P.; Wang, P. Y.; Wang, Z. C.; Ouyang, G. P.; Li, Z.; Yang, S. J. Agric. Food Chem. 2020, 68, 4285.

    11. [11]

      (a) Chen, Y.; Zhao, J.; Guo, H.; Xie, L. J. Org Chem. 2012, 77, 2192.
      (b) Gong, D.; Han, S. C.; Iqbal, A.; Qian, J.; Cao, T.; Liu, W.; Liu, W.; Qin, W.; Guo, H. Anal. Chem. 2017, 89, 13112.
      (c) Zhang, D.; Xu, N.; Li, H.; Yao, Q.; Xu, F.; Fan, J.; Du, J.; Peng, X. Ind. Eng. Chem. Res. 2017, 56, 9303.

    12. [12]

      (a) Jia, T.; Fu, C.; Huang, C.; Yang, H.; Jia, N. ACS Appl. Mater. Interfaces 2015, 7, 10013.
      (b) Sarkar, A.; Fouzder, C.; Chakraborty, S.; Ahmmed, E.; Kundu, R.; Dam, S.; Chattopadhyay, P.; Dhara, K. Chem. Res. Toxicol. 2020, 33, 651.

    13. [13]

      Luo, Z.; Huang, Z.; Li, K.; Sun, Y.; Lin, J.; Ye, D.; Chen, H.-Y. Anal. Chem. 2018, 90, 2875.  doi: 10.1021/acs.analchem.7b05022

    14. [14]

      Wang, W. H.; Rusin, O.; Xu, X. Y.; Kim, k. k.; Escobedo, J. O.; Fakayode, S. O.; Fletcher, K. A.; Lowry, M.; Schowalter, C. M.; Lawrence, C. M.; Froczek, F. R.; Warner, I. M.; Strongin, R. M. J. AM. CHEM. SOC. 2005, 127, 15949-15958  doi: 10.1021/ja054962n

    15. [15]

      (a) Chen, J.; Jiang, X.; Carroll, S.; Huang, J.; Wang, J. Org. Lett. 2015, 17, 5978.
      (b) Cheng, T.; Huang, W.; Gao, D.; Yang, Z.; Zhang, C.; Zhang, H.; Zhang, J.; Li, H.; Yang, X. F. Anal. Chem. 2019, 91, 10894.

    16. [16]

      Sinha, S. H.; Owens, E. A.; Feng, Y.; Yang, Y.; Xie, Y.; Tu, Y.; Henary, M.; Zheng, Y. G. Eur. J. Med. Chem. 2012, 54, 647.  doi: 10.1016/j.ejmech.2012.06.017

    17. [17]

      Liu, B.; Wang, J.; Zhang, G.; Bai, R.; Pang, Y. ACS Appl. Mater. Interfaces 2014, 6, 4402.  doi: 10.1021/am500102s

  • 加载中
    1. [1]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    2. [2]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    3. [3]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    4. [4]

      Wei GAOMeiqi SONGXuan RENJianliang BAIJing SUJianlong MAZhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112

    5. [5]

      Sixin AiWenxiu LiHuayong ZhuYang WanWeiying Lin . Viscosity-responsive signal amplification dual-modal probe triggered by cysteine/homocysteine for monitoring diabetic liver damages and repair processes. Chinese Chemical Letters, 2025, 36(3): 109904-. doi: 10.1016/j.cclet.2024.109904

    6. [6]

      Zhixiao XiongShanni QiuYuyu WangHouna DuanYi XiaoYufang XuWeiping ZhuXuhong Qian . Photocalibrated NO release from the zinc ion fluorescent probe based on naphthalimide and its application in living cells. Chinese Chemical Letters, 2025, 36(4): 110002-. doi: 10.1016/j.cclet.2024.110002

    7. [7]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    8. [8]

      Xinyi ZhaoYuai DuanZihan LiuHua GengYaping LiZhongfeng LiTianyu Han . Mapping sweat pores for biometric identification based on a donor-acceptor hydrophilic fluorescent probe. Chinese Chemical Letters, 2025, 36(8): 110617-. doi: 10.1016/j.cclet.2024.110617

    9. [9]

      Chuanfeng FanJian GaoYingkai GaoXintong YangGaoning LiXiaochun WangFei LiJin ZhouHaifeng YuYi HuangJin ChenYingying ShanLi Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838

    10. [10]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    11. [11]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    12. [12]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    13. [13]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    14. [14]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    15. [15]

      Pengli GUANRenhu BAIXiuling SUNBin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058

    16. [16]

      Qiang HUZhiqi CHENZhong CHENXu WANGWeina WU . Pyridinium-chalcone-based ClO- fluorescent probe: Preparation and biological imaging applications. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1789-1795. doi: 10.11862/CJIC.20250086

    17. [17]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    18. [18]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    19. [19]

      Tao LiuXuwei HanXueyi SunWeijie ZhangKe GaoRunan MinYuting TianCaixia Yin . An activated fluorescent probe to monitor NO fluctuation in Parkinson’s disease. Chinese Chemical Letters, 2025, 36(3): 110170-. doi: 10.1016/j.cclet.2024.110170

    20. [20]

      Qian PangFangjun HuoYongkang YueCaixia Yin . ONOO and viscosity dual-response fluorescent probe for arthritis imaging in vivo. Chinese Chemical Letters, 2025, 36(9): 110713-. doi: 10.1016/j.cclet.2024.110713

Metrics
  • PDF Downloads(9)
  • Abstract views(1529)
  • HTML views(194)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return