Citation: Zong Lingbo, Chen Jianbin, Ren Xinyi, Zhang Guoying, Jia Xiaofei. Progress in Application of Organic Polymers Supported Rhodium Catalysts in Hydroformylation[J]. Chinese Journal of Organic Chemistry, ;2020, 40(8): 2308-2321. doi: 10.6023/cjoc202003006 shu

Progress in Application of Organic Polymers Supported Rhodium Catalysts in Hydroformylation

  • Corresponding author: Jia Xiaofei, jiaxiaofei139@163.com
  • Received Date: 3 March 2020
    Revised Date: 1 May 2020
    Available Online: 19 May 2020

    Fund Project: Open Fund of the Department of Chemistry, Qingdao University of Science and Technology QUSTHX202010Open Fund of the Department of Chemistry, Qingdao University of Science and Technology QUSTHX201932National Natural Science Foundation of China 21703116National Natural Science Foundation of China 51702180Project supported by the National Natural Science Foundation of China (Nos. 21703116, 51702180) and the Open Fund of the Department of Chemistry, Qingdao University of Science and Technology (Nos. QUSTHX201932, QUSTHX202010)

Figures(27)

  • Hydroformylation is considered one of the most important homogenously catalyzed processes in dustry. Hydroformylation has been widely used in the production of aldehydes, and aldehydes can also be further converted into high value-added alcohols, acids and other derivatives. Compared with the homogeneous reaction, the heterogeneous catalysts present significant advantages in terms of recyclability, separation of catalysts and products and so on. In recent years, organic polymer-supported rhodium catalysts have shown excellent catalytic activity, high selectivity, and good recycleability in heterogeneous hydroformylation, and have attracted widespread attention. The research progress of the application of organic polymer supported catalysts in hydroformylation is summarized, including synthesis, material characteristics and application of supported catalysts. Finally, the prospect of the reaction is discussed.
  • 加载中
    1. [1]

      (a) van Leeuwen, P. W. N. M.; Claver, C. Rhodium catalyzed hydroformylation, Kluwer Academic Publishers, Dordrecht, 2000.
      (b) Haumann, M.; Riisager, A. Chem. Rev. 2008, 108, 1474.
      (c) Hebrard, F.; Kalck, P. Chem. Rev. 2009, 109, 4272.
      (d) Franke, R.; Selent, D.; Borner, A. Chem. Rev. 2012, 112, 5675.
      (e) Pospech, J.; Fleischer, I.; Franke, R.; Buchholz, S.; Beller, M. Angew. Chem., Int. Ed. 2013, 52, 2852.

    2. [2]

      Roelen, O. U. S. 2327066, 1943[Chem. Abstr. 1944, 38, 363].

    3. [3]

      Börner, A.; Franke, R. Hydroformylation: Funda Mentals, Processes, and Applications in Organic Synthesis, Wiley-VCH, Weinheim, 2016.

    4. [4]

      (a) Casey, C. P.; Paulsen, E. L.; Beuttenmueller, E. W.; Proft, B. R.; Petrovich, L. M.; Matter, B. A.; Powell, D. R. J. Am. Chem. Soc. 1997, 119, 11817.
      (b) Herrmann, W. A.; Kohlpaintner, C. W.; Herdtweck, E.; Kiprof, P. Inorg. Chem. 1991, 30, 4271.
      (c) Yu, S.; Zhang, X.; Yan, Y.; Cai, C.; Dai, L.; Zhang, X. Chem. Eur. J. 2010, 16, 4938.
      (d) Yan, Y.; Zhang, X.; Zhang, X. Adv. Synth. Catal. 2007, 349, 1582.
      (e) Chen, C.; Li, P.; Hu, Z.; Wang, H.; Zhu, H.; Hu, X.; Wang, Y.; Lv, H.; Zhang, X. Org. Chem. Front. 2014, 1, 947.

    5. [5]

      Klein, H.; Jackstell, R.; Wiese, K.-D.; Borgmann, C.; Beller, M. Angew. Chem., Int. Ed. 2001, 40, 3408.

    6. [6]

      (a) Carbó, J. J.; Maseras, F.; Bo. C.; van Leeuwen, P. W. N. M. J. Am. Chem. Soc. 2001, 123, 7630.
      (b) Kranenburg, M.; van der Burgt, Y. E. M.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Goubitz, K.; Fraanje, J. Organometallics 1995, 14, 3081.
      (c) Van der Veen, L. A.; Boele, M. D. K.; Bregman, F. R.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Goubitz, K.; Fraanje, J.; Schenk, H.; Bo, C. J. Am. Chem. Soc. 1998, 120, 11616.
      (d) van der Veen, L. A.; Kamer, P. C. J.; van Leeu wen, P. W. N. M. Angew. Chem., Int. Ed. 1999, 38, 336.

    7. [7]

      Burke, P. M.; Garner, J. M.; Kreutzer, K. A.; Teunis sen, A. J. J. M.; Snijder, C. S.; Hansen, C. B. WO 97/33854, 1997.

    8. [8]

      (a) Cunny, G. D.; Buchwald, S. L. J. Am. Chem. Soc. 1993, 115, 2066.
      (b) Behr, A.; Obst, D.; Schulte, C. J. Mol. Catal. A-Chem. 2003, 206, 179.

    9. [9]

      (a) van der Slot, S. C.; Duran, J.; Luten, J.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. Organometallics 2002, 21 3873.
      (b) Yan, Y.; Zhang, X.; Zhang, X. J. Am. Chem. Soc. 2006, 128, 16058.
      (c) Yu, S.; Chie, Y.; Guan, Z.; Zou, Y.; Li, W.; Zhang, X. Org. Lett. 2009, 11, 241.
      (d) Jia, X.; Wang, Z.; Xia, C.; Ding, K. Chem. Eur. J. 2012, 18, 15288.
      (e) Ren, X.; Zheng, Z.; Zhang, L.; Wang, Z.; Xia, C.; Ding, K. Angew. Chem., Int. Ed. 2017, 56, 310.
      (f) Jia, X.; Ren, X.; Wang, Z.; Xia, C.; Ding, K. Chin. J. Org. Chem. 2019, 39, 207(in Chinese)
      (贾肖飞, 任新意, 王正, 夏春谷, 丁奎岭, 有机化学, 2019, 39, 207.)
      (g) Chen, C.; Qiao, Y.; Geng, H.; Zhang, X. Org. Lett. 2013, 15, 1048.

    10. [10]

      (a) Li, C; Wang, W; Yan, L.; Ding, Y. Front. Chem. Sci. Eng. 2018, 12, 113.
      (b) Zhang, J.; Sun, P.; Zhao, Z. L.; Li, F. W. Chin. Sci. Bull. 2019, 64, 3173.

    11. [11]

      (a) Arhancet, J. P.; Davis, M. E.; Merola, J. S.; Hanson, B. E. Nature 1989, 339, 454.
      (b) Chaudhari, R. V.; Bhanage, B. M.; Deshpande, R. M. Nature 1995, 373, 501.
      (c) Sharma, S. K.; Jasra, R. V. Catal. Today 2015, 247, 70.
      (d) Hapiot, F.; Ponchel, A.; Tilloy, S.; Monflier, Compt. Rend. Chim. 2011, 14, 149.
      (e) Paganelli, S.; Piccolo, O.; Pontini, P.; Tassini, R.; Rathod, V. D. Catal. Today 2015, 247, 64.

    12. [12]

      (a) Horváth, I. T.; Kiss, G.; Cook, R. A., Bond, J. E.; Stevens, P. A.; Rábai, J.; Mozeleski, E. J. J. Am. Chem. Soc. 1998, 120, 3133.
      (b) Cornils, B. Angew. Chem., Int. Ed. 1997, 36, 2057.
      (c) Chen, W. P.; Xu, L. J.; Xiao, J. L. Chem. Commun. 2000, 10, 839.
      (d) Horvath, I. T.; Rabai, J. Science 1994, 266, 72.

    13. [13]

      (a) Mehnert, C. P.; Cook, R. A.; Dispenziere, N. C.; Afeworki, M. J. Am. Chem. Soc. 2002, 124, 12932.
      (b) Riisager, A.; Fehrmann, R.; Flicker, S.; van Hal, R.; Haumann, M.; Wasserscheid, P. Angew. Chem., Int. Ed. 2005, 44, 815.
      (c) Jin, X.; Feng, J.; Ma, Q.; Song, H.; Liu, Q.; Xu, B.; Zhang, M.; Li, S.; Yu, S. Green Chem. 2019, 21, 3267.
      (d) Walter, S.; Spohr, H.; Franke, R.; Hieringer, W.; Wasserscheid, P.; Haumann, M. ACS Catal. 2017, 7, 1035

    14. [14]

      (a) David, J.; Cole-Hamilton, O. J. Science 2003, 299, 1702.
      (b) Jessop, P. G.; Hsion, Y.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1996, 118, 344.
      (c) Kainz, S., Koch, D.; Baumann, W.; Leitner, W. Angew. Chem., Int. Ed. 1997, 36, 1628.
      (d) Koeken, A. C. J.; Smeets, N. M. B. Catal. Sci. Technol. 2013, 3, 1036.
      (e) Estorach, C. T.; Orejon, A.; Masdeu-Bulto, A. M. Green Chem. 2008, 10, 545.

    15. [15]

      Gärtner, L.; Cornils, B.; Lappe, P. (to Ruhrchemie AG) EP 0107006, 1983[Chem. Abstr. 1984, 101, 55331].

    16. [16]

      (a) Kuntz, E. G. CHEMTECH 1987, 17, 570.
      (b) Cornils, B.; Kuntz, E. G. J. Organomet. Chem.1995, 502, 177.

    17. [17]

      Herrmann, W. A.; Kohlpaintner, C. W.; Bahrmann, H.; Konkol, W. J. Mol. Catal. 1992, 73, 191.

    18. [18]

      Bahmann, H.; Bergrath, K.; Kleiner, H.-J.; Lappe, P.; Naumann, C.; Peters, D.; Regnat, D. J. Organomet. Chem. 1996, 520, 97.

    19. [19]

      (a) Vunain, E.; Ncube, P.; Jalama, K.; Meijboom, R. J. Porous Mater. 2018, 25, 303.
      (b) Malihan, L. B.; Nisola, G. M.; Mittal, N.; Lee, S.-P.; Seo, J. G.; Kim, H.; Chung, W. J. RSC Adv. 2016, 6, 33901.
      (c) Sudheesh, N.; Parmar, J. N.; Shukla, R. S. Appl. Catal. A Gen. 2012, 415, 124.
      (d) Yan, L.; Ding, Y. J.; Lin, L. W.; Zhu, H. J.; Yin, H. M.; Li, X. M.; Lu, Y. J. Mol. Catal. A-Chem. 2009, 300, 116.

    20. [20]

      (a) Wolf, P.; Logemann, M.; Schorner, M.; Keller, L.; Haumann, M.; Wessling, M. RSC Adv. 2019, 9, 27732.
      (b) Weiss, A.; Munoz, M.; Haas, A.; Rietzler, F.; Steinruck, H.-P.; Haumann, M.; Wasserscheid, P.; Etzold, B. J. ACS Catal. 2016, 6, 2280.
      (c) Weiβ A.; Giese, M.; Lijewski, M.; Franke, R.; Wasserscheid, P.; Haumann, M. Catal. Sci. Technol. 2017, 7, 5562.

    21. [21]

      (a) Chuai, H. Y.; Su, P.; Liu, H.; Zhu, B.; Zhang, S.; Huang, W. Catalysts 2019, 9, 194.
      (b) Liu, J.; Yan, L.; Ding, Y.; Jiang, M.; Dong, W.; Song, X.; Liu, T.; Zhu, H. Appl. Catal. A Gen. 2015, 492, 127.

    22. [22]

      (a) Nozaki, K.; Itoi, Y.; Shibahara, F.; Shirakawa, E.; Ohta, T.; Takaya, H.; Hiyama, T. J. Am. Chem. Soc. 1998, 120, 4051.
      (b) Nozaki, K.; Shibahara, F.; Itoi, Y.; Shirakawa, E.; Ohta, T.; Takaya, H.; Hiyama, T. Bull. Chem. Soc. Jpn. 1999, 72, 1911.

    23. [23]

      (a) Shibahara, F.; Nozaki, K.; Hiyama, T. J. Am. Chem. Soc. 2003, 125, 8555.
      (b) Nozaki, K.; Shibahara, F.; Hiyama, T. Chem. Lett. 2000, 694.

    24. [24]

      (a) Stiriba, S. E.; Slagt, M. Q.; Kautz, H.; Klein Gebbink, R. J. M.; Thomann, R.; Frey, H.; van Koten, G. Chem. Eur. J. 2004, 10, 1267.
      (b) Kumar, K. R.; Kizhakkedathu, J. N.; Brooks, D. E. Macromol. Chem. Phys. 2004, 205, 567.
      (c) Wilms, D.; Stiriba, S. E.; Frey, H. Acc. Chem. Res. 2010, 43, 129.
      (d) Slagt, M. Q.; Stiriba, S.-E.; Kautz, H.; Klein Gebbink, R. J. M.; Frey, H.; van Koten, G. Organometallics 2004, 23, 1525.

    25. [25]

      Ricken, S.; Osinski, P. W.; Eilbracht, P.; Haag, R. J. Mol. Catal. A-Chem. 2006, 257, 78.

    26. [26]

      (a) Wang, H.; Sun, W.; Xia, C. J. Mol. Catal. A: Chem. 2003, 206, 199.
      (b) Makhubela, B. C. E.; Jardine, A.; Smith, G. S. Appl. Catal. A Gen. 2011, 393, 231.
      (c) Hertrich, M. F.; Scharnagl, F. K.; Pews-Davtyan, A.; Kreyenschulte, C. R.; Lund, H.; Bartling, S.; Jackstell, R.; Beller, M. Chem.-Eur. J. 2019, 25, 5534.
      (d) Molnar, A. Coord. Chem. Rev. 2019, 388, 126.
      (e) Antony, R.; Arun, T.; Manickam, S. T. D. Int. J. Biol. Macromol. 2019, 129, 615.

    27. [27]

      Makhubela, B. C. E.; Jardine, A.; Smith, G. S. Green Chem. 2012, 14, 338.

    28. [28]

      (a) Shifrina, Z. B.; Matveeva, V. G.; Bronstein, L. M. Chem. Rev. 2020, 120, 1350.
      (b) Kramer, S.; Bennedsen, N. R.; Kegnæs, S. ACS Catal. 2018, 8, 6961.
      (c) Sun, Q.; Dai, Z.; Meng, X.; Xiao, F.-S. Chem. Soc. Rev. 2015, 44, 6018.
      (d) Kaur, P.; Hupp, J. T.; Nguyen, S. B. T. ACS Catal. 2011, 1, 819.

    29. [29]

      Sun, Q.; Jiang, M.; Shen, Z.; Jin, Y.; Pan, S.; Wang, L.; Meng, X.; Chen, W.; Ding, Y.; Li, J.; Xiao, F.-S. Chem. Commun. 2014, 50, 11844.

    30. [30]

      Jiang, M.; Yan, L.; Ding, Y.; Sun, Q.; Liu, J.; Zhu, H.; Lin, R.; Xiao, F.; Jiang, Z.; Liu, J. J. Mol. Catal. A: Chem. 2015, 404, 211.

    31. [31]

      Sun, Q.; Aguila, B.; Verma, G.; Liu, X.; Dai, Z.; Deng, F.; Meng, X.; Xiao, F.-S.; Ma, S. Chem 2016, 1, 628.

    32. [32]

      Tang, Y.; Dong, K.; Wang, S.; Sun, Q.; Meng, X.; Xiao, F.-S. Mol. Catal. 2019, 474, 110408.

    33. [33]

      Sun, Q.; Dai, Z.; Liu, X.; Sheng, N.; Deng, F.; Meng, X.; Xiao, F. S. J. Am. Chem. Soc. 2015, 137, 5204.

    34. [34]

      Li, C.; Sun, K.; Wang, W.; Yan, L.; Sun, X.; Wang, Y.; Xiong, K.; Zhan, Z.; Jiang, Z.; Ding, Y. J. Catal. 2017, 353, 123.

    35. [35]

      Li, C.; Xiong, K.; Yan, L.; Jiang, M.; Song, X.; Wang, T.; Chen, X.; Zhan, Z.; Ding, Y. Catal. Sci. Technol. 2016, 6, 2143.

    36. [36]

      Wang, Y.; Yan, L.; Li, C.; Jiang, M.; Wang, W.; Ding, Y. Appl. Catal. A Gen. 2018, 551, 98.

    37. [37]

      Wang, Y.; Yan, L.; Li, C.; Jiang, M.; Zhao, Z.; Hou, G.; Ding, Y. J. Catal. 2018, 368, 197.

    38. [38]

      Jia, X.; Liang, Z.; Chen, J.; Lv, J.; Zhang, K.; Gao, M.; Zong, L.; Xie, C. Org. Lett. 2019, 21, 2147.

    39. [39]

      (a) Johnson, J. R.; Cuny, G. D.; Buchwald, S. L. Angew. Chem., Int. Ed. Engl. 1995, 34, 1760.
      (b) Agabekov, V.; Seiche, W.; Breit, B. Chem. Sci. 2013, 4, 2418.
      (c) Fang, X.; Zhang, M.; Jackstell, R.; Beller, M. Angew. Chem., Int. Ed. 2013, 52, 4645.
      (d) Zhang, Z.; Wang, Q.; Chen, C.; Han, Z.; Dong, X.; Zhang, X. Org. Lett. 2016, 18, 3290.

    40. [40]

      Liang, Z.; Chen, J.; Chen, X.; Zhang, K.; Lv, J.; Zhao, H.; Zhang, G.; Xie, C.; Zong, L.; Jia, X. Chem. Commun. 2019, 55, 13721.

    41. [41]

      Dong, K.; Sun, Q.; Tang, Y.; Shan, C.; Aguila, B.; Wang, S.; Meng, X.; Ma, S.; Xiao, F.-S. Nat. Commun. 2019, 10, 3059.

    42. [42]

      Wang, T.; Wang, W.; Lyu, Y.; Xiong, K.; Li, C.; Zhang, H.; Zhan, Z.; Jiang, Z.; Ding, Y. Chin. J. Catal. 2017, 38, 691.

  • 加载中
    1. [1]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    2. [2]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    3. [3]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    4. [4]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    5. [5]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    6. [6]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    7. [7]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    8. [8]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    9. [9]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    10. [10]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    11. [11]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    12. [12]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    15. [15]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    16. [16]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    17. [17]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    18. [18]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    19. [19]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    20. [20]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

Metrics
  • PDF Downloads(31)
  • Abstract views(3141)
  • HTML views(773)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return