Citation: Liu Aiyao, Liu Jiang, Mei Haibo, Gerd-Volker Röschenthaler, Han Jianlin. Selectfluor-Promoted Twofold Sulfination of Alcohols for the Synthesis of Sulfinic Ester from Diaryldisulfides[J]. Chinese Journal of Organic Chemistry, ;2020, 40(7): 1926-1933. doi: 10.6023/cjoc202003004 shu

Selectfluor-Promoted Twofold Sulfination of Alcohols for the Synthesis of Sulfinic Ester from Diaryldisulfides

  • Corresponding author: Mei Haibo, meihb@njfu.edu.cn Han Jianlin, hanjl@njfu.edu.cn
  • Received Date: 3 March 2020
    Revised Date: 6 May 2020
    Available Online: 15 May 2020

    Fund Project: the German Research Foundation 362/74-1the National Natural Science Foundation of China 21761132021Project supported by the National Natural Science Foundation of China (No. 21761132021), the German Research Foundation (No. 362/74-1) and the Open Project of Chemistry Department of Qingdao University of Science and Technology (No. QUSTHX202005)the Open Project of Chemistry Department of Qingdao University of Science and Technology QUSTHX202005

Figures(4)

  • An oxidative twofold sulfination of alcohol with Selectfluor as an efficient oxidant was developed. This reaction proceeded smoothly achieving the unprecedented sulfination transformation of varieties of diaryldisulfides and alcohols under simple conditions, affording the corresponding sulfinic esters in excellent yields. The current reaction provides a new and convenient strategy for the preparation of sulfinic esters.
  • 加载中
    1. [1]

    2. [2]

      (a) Allison, W. S. Acc. Chem. Res. 1976, 9, 293.
      (b) Kim, J. H.; Lee, J. O.; Lee, S. K.; Moon, J. W.; You, G. Y.; Kim, S. J.; Park, S.-H.; Park, J. M.; Lim, S. Y.; Suh, P.-G.; Uhm, K.-O.; Song, M. S.; Kim, H. S. J. Biol. Chem. 2011, 286, 7567.
      (c) Jönsson, T. J.; Murray, M. S.; Johnson, L. C.; Lowther, W. T. J. Biol. Chem. 2008, 283, 23846.

    3. [3]

      (a) Douglass, I. B. J. Org. Chem. 1965, 30, 633.
      (b) Douglass, I. B.; Ward, F. J.; Norton, R. V. J. Org. Chem. 1967, 32, 324.
      (c) Hajipour, A. R.; Falahati, A. R.; Ruoho, A. E. Tetrahedron Lett. 2006, 47, 2717.
      (d) Fernandez, I.; Khiar, N.; Roca, A.; Benabra, A.; Alcudia, A.; Espartero, J. L.; Alcudia, F. Tetrahedron Lett. 1999, 40, 2029.

    4. [4]

      Toshikazu, T.; Shigeru, O. Bull. Chem. Soc. Jpn. 1982, 55, 3937.  doi: 10.1246/bcsj.55.3937

    5. [5]

      D'Oca, M. G. M.; Russowsky, D.; Canto, K.; Gressler, T.; Goncüalves, R. S. Org. Lett. 2002, 4, 1763.  doi: 10.1021/ol0258381

    6. [6]

      Tranquilino, A.; Andrade, S. R. C. P.; da Silva, A. P. M.; Menezes, P. H.; Oliveira, R. A. Tetrahedron Lett. 2017, 58, 1265.

    7. [7]

      (a) Field, L.; Hoelzel, C. B.; Locke, J. M. J. Am. Chem. Soc. 1962, 84, 847.
      (b) Brownbridge, P.; Jowett, I. C. Synthesis 1988, 252.
      (c) Xia, M.; Chen, Z. C. Synth. Commun. 1997, 27, 1301.
      (d) Zhou, C.; Tan, Z.; Jiang, H.; Zhang, M. Green Chem. 2018, 20, 1992.
      (e) Douglass, I. B. J. Org. Chem. 1973, 39, 563.
      (f) Brownbridge, P.; Jowett, I. C. Synthesis 1988, 252.
      (g) Wei, J.; Sun, Z. Org. Lett. 2015, 17, 5396.

    8. [8]

      (a) Du, B.; Li, Z.; Qian, P.; Han, J. L.; Pan, Y. Chem.-Asian J. 2016, 11, 478.
      (b) Du, B.; Wang, W.; Wang, Y.; Qi, Z.; Tian, J.; Zhou, J.; Wang, X.; Han, J. L.; Ma, J.; Pan, Y. Chem.-Asian J. 2018, 13, 404.

    9. [9]

      (a) Ai, C.; Shen, H.; Song, D.; Li, Y.; Yi, X.; Wang, Z.; Ling, F.; Zhong, W. Green Chem. 2019, 21, 5528.
      (b) Gong, F.; Ju, F.; Zuo, L.; Wang, Q.; Li, R.; Hu, J.; Li, Z.; Takfaoui, A.; Lei, A. J. Chin. Chem. Soc. 2020, 67, 192.

    10. [10]

      (a) He, Y.; Zhang, J.; Xu, L.; Wei, Y. Tetrahedron Lett. 2020, 61, 151631.
      (b) Lavey, C. F.; Hesk, D.; Hendershot, S.; Koharski, D.; Saluja, S.; Namara, P. M. J. Labelled Compd. Radiopharm. 2007, 50, 264.
      (c) Ji, Y.; Wang, M.; Li, H.; Liu, Y.; Wu, Y. Eur. J. Org. Chem. 2016, 4077.
      (d) Dahn, H.; Toan, V. V.; Ung-Truong, M. Magn. Reson. Chem. 1991, 29, 897.

    11. [11]

      Nyffeler, P. T.; Durόn, S. G.; Burkart, M. D.; Vincent, S. P.; Wong, C. H. Angew. Chem., Int. Ed. 2005, 44, 192.  doi: 10.1002/anie.200400648

    12. [12]

      (a) Cheng, H. G.; Yin, G. Chem 2019, 5, 1022.
      (b) Szpera, R.; Moseley, D. F. J.; Smith, L. B.; Sterling, A. J.; Gouverneur, V. Angew. Chem., Int. Ed. 2019, 58, 14824.
      (c) Wood, S. H.; Etridge, S.; Kennedy, A. R.; Percy, J. M.; Nelson, D. J. Chem.-Eur. J. 2019, 25, 5574.
      (d) Xu, J.; Kuang, Z.; Song, Q. Chin. Chem. Lett. 2018, 29, 963.
      (e) Shibata, N.; Suzuki, E.; Takeuchi, Y. J. Am. Chem. Soc. 2000, 122, 10728.
      (f) Mei, H.; Remete, A. M.; Zou, Y.; Moriwaki, H.; Fustero, S.; Kiss, L.; Soloshonok, V. A.; Han, J. Chin. Chem. Lett. 2020, DOI: org/10.1016/j.cclet.2020.03.050.

    13. [13]

      (a) Niu, L.; Liu, J.; Liang, X. A.; Wang, S.; Lei, A. Nat. Commun. 2019, 10, 467.
      (b) Liang, X. A.; Niu, L.; Wang, S.; Liu, J.; Lei, A. Org. Lett. 2019, 21, 2441.
      (c) Xie, L. Y.; Qiu, J.; Peng, S.; Liu, K. J.; Wang, Z.; Ding, M. H.; Wang, Y.; Cao, Z.; He, W. M. Green Chem. 2018, 20, 760.
      (d) Zhou, J.; Zou, Y.; Zhou, P.; Chen, Z.; Li, J. Org. Chem. Front. 2019, 6, 1594.
      (e) Xie, L. Y.; Peng, S.; Liu, F.; Yi, J. Y.; Wang, M.; Tang, Z.; Xu, X.; He, W. M. Adv. Synth. Catal. 2018, 360, 4259.
      (f) Galloway, J. D.; Mai, D. N.; Baxter, R. D. Org. Lett. 2017, 19, 5772.
      (g) Wang, C. X.; Cai, J. W.; Zhang, M.; Zhao, X. M. J. Org. Chem. 2017, 82, 1260.
      (h) Zhou, G.; Tian, Y. W.; Zhao, X. M.; Dan, W. Y. Org. Lett. 2018, 20, 4858.
      (i) Hu, J.; Zhou, G.; Tian, Y.; Zhao, X. Org. Biomol. Chem. 2019, 17, 6342.
      (j) Yuan, J. W.; Zhu, J. L.; Li, B.; Yang, L. Y.; Mao, P.; Zhang, S. R.; Li, Y. C.; Qu, L. B. Org. Biomol. Chem. 2019, 17, 10178.
      (k) Yuan, J.; Zeng, F.; Mai, W.; Yang, L.; Xiao, Y.; Mao, P.; Wei, D. Org. Biomol. Chem. 2019, 17, 5038.
      (l) Mai, W. P.; Yuan, J. W.; Zhu, J. L.; Li, Q. Q.; Yang, L. R.; Xiao, Y. M.; Mao, P.; Qu, L. B. ChemistrySelect 2019, 4, 11066.
      (m) Mei, H. B.; Liu, J.; Pajkert, R.; Röschenthaler, G. V.; Han, J. L. Org. Biomol. Chem. 2020, 18, 3761.

    14. [14]

      Yadav, J. S.; Reddy, B. V. S.; Reddy, Y. J. Tetrahedron Lett. 2007, 48, 7034.  doi: 10.1016/j.tetlet.2007.07.130

    15. [15]

      Kirihara, M.; Naito, S.; Ishizuka, Y.; Hanai, H.; Noguchi, T. Tetrahedron Lett. 2011, 52, 3086.  doi: 10.1016/j.tetlet.2011.03.132

    16. [16]

      Vincent, S. P.; Burkart, M. D.; Tsai, C. Y.; Zhang, Z.; Wong, C. H. J. Org. Chem. 1999, 64, 5264.

    17. [17]

      Tota, A.; John-Campbell, S. S.; Briggs, E. L.; Estévez, G. O.; Afonso, M.; Degennaro, L.; Luisi, R.; Bull, J. A. Org. Lett. 2018, 20, 2599.  doi: 10.1021/acs.orglett.8b00788

  • 加载中
    1. [1]

      Xiaoli DengXiangchao LuYang CaoQianjin Chen . Electrochemical imaging uncovers the heterogeneity of HER activity by sulfur vacancies in molybdenum disulfide monolayer. Chinese Chemical Letters, 2025, 36(3): 110379-. doi: 10.1016/j.cclet.2024.110379

    2. [2]

      Ping WangTing WangMing XuZe GaoHongyu LiBowen LiYuqi WangChaoqun QuMing Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930

    3. [3]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    4. [4]

      Yang LiYanan DongZhihong WeiChangzeng YanZhen LiLin HeYuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206

    5. [5]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    6. [6]

      Junmeng LuoQiongqiong WanSuming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836

    7. [7]

      Shan-Shan LiJuan LuoShu-Nuo LiangDan-Na ChenLi-Ning ChenCheng-Xue PanPeng-Ju Xia . Efficient and regioselective C=S bond difunctionalization through a three-component radical relay strategy. Chinese Chemical Letters, 2025, 36(6): 110424-. doi: 10.1016/j.cclet.2024.110424

    8. [8]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    9. [9]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    10. [10]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    11. [11]

      Shaonan Liu Shuixing Dai Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277

    12. [12]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    13. [13]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    14. [14]

      Zhenjie YangChenyang HuXuan PangXuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340

    15. [15]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    16. [16]

      Tong TongLezong ChenSiying WuZhong CaoYuanbin SongJun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689

    17. [17]

      Qiang FengJindong HaoYa HuRong FuWei WeiDong Yi . Photocatalytic multi-component synthesis of ester-containing quinoxalin-2(1H)-ones using water as the hydrogen donor. Chinese Chemical Letters, 2025, 36(6): 110582-. doi: 10.1016/j.cclet.2024.110582

    18. [18]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    19. [19]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    20. [20]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

Metrics
  • PDF Downloads(15)
  • Abstract views(1309)
  • HTML views(184)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return